मराठी

Mark the Correct Alternative in the Following Question:Suppose a Random Variable X Follows the Binomial Distribution with Parameters N And P, Where 0 < P < 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals

पर्याय

  • \[\frac{1}{2}\]

  • \[\frac{1}{3}\]

  • \[\frac{1}{5} \]

  • \[\frac{1}{7}\]

MCQ

उत्तर

\[\text{ As, X follows the binomial distribution with parameters n and p, where 0 } < p < 1\]

\[\text{ So } , P\left( X = r \right) =^{n}{}{C}_r p^r q^\left( n - r \right) , \text{ where  } r = 0, 1, 2, 3, . . . ,\]

 \[\text{ Now } , \]

\[\frac{P\left( X = r \right)}{P\left( X = n - r \right)} = \frac{^{n}{}{C}_r p^r q^\left( n - r \right)}{^{n}{}{C}_\left( n - r \right) p^\left( n - r \right) q^r} = p^\left( 2r - n \right) q^\left( n - 2r \right) \]

\[\text{ As } , \frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{  is independent of n and r } \]

\[\text{ So, p } = q \left[ \text{ Since, }  \frac{P\left( X = r \right)}{P\left( X = n - r \right)} = p^\left( 2r - n \right) \  p^\left( n - 2r \right) = p^0 = 1 \right]\]

\[\text{ This is only possible if p } = \frac{1}{2}\]

\[ \therefore p = \frac{1}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - MCQ [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
MCQ | Q 27 | पृष्ठ २९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that

  1. all the five cards are spades?
  2. only 3 cards are spades?
  3. none is a spade?

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.


In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.


Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.

(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)


Find the probability of getting 5 exactly twice in 7 throws of a die.


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?


A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.


A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?


Find the probability distribution of the number of sixes in three tosses of a die.

 

Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.


The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is

\[\frac{28 \times 9^6}{{10}^8} .\]

 


A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?


Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university all will graduate .

 

In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.


In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize at least twice.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?


Determine the binomial distribution whose mean is 20 and variance 16.

 

The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.


If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.


The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.

 

If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals

 


A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is


In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is


The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is  \[\frac{3}{2^{10}}\] , the value of n is

 


Mark the correct alternative in the following question:

Which one is not a requirement of a binomial dstribution?


Mark the correct alternative in the following question:

The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  none is a spade ?


Explain why the experiment of tossing a coin three times is said to have binomial distribution.


Which one is not a requirement of a binomial distribution?


If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-


The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.


An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.


For the binomial distribution X ∼ B(n, p), n = 6 and P(X = 4) = P(X = 2). find p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×