मराठी

Find the Probability Distribution of the Number of Sixes in Three Tosses of a Die. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the probability distribution of the number of sixes in three tosses of a die.

 
बेरीज

उत्तर

Let X be the number of 6 in 3 tosses of a die.
Then X follows a binomial distribution with n =3.

\[p = \frac{1}{6}, q = 1 - p = \frac{5}{6}\]
\[P(X = r) = ^{3}{}{C}_r \left( \frac{1}{6} \right)^r \left( \frac{5}{6} \right)^{3 - r} , r = 0, 1, 2, 3\]
\[P(X = 0) = ^{3}{}{C}_0 \left( \frac{1}{6} \right)^0 \left( \frac{5}{6} \right)^{3 - 0} \]
\[P(X = 1) =^{3}{}{C}_1 \left( \frac{1}{6} \right)^1 \left( \frac{5}{6} \right)^{3 - 1} \]
\[P(X = 2) = ^{3}{}{C}_2 \left( \frac{1}{6} \right)^2 \left( \frac{5}{6} \right)^{3 - 2} \]
\[P(X = 3) = ^{3}{}{C}_3 \left( \frac{1}{6} \right)^3 \left( \frac{5}{6} \right)^{3 - 3} \]

\[\text{ Hence, the distribution of X is as follows }  . \]
   X       0      1      2       3
\[P(X) \       \             \frac{125}{216} \frac{75}{216} \frac{15}{216} \frac{1}{216}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Exercise 33.1 | Q 23 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that

  1. all the five cards are spades?
  2. only 3 cards are spades?
  3. none is a spade?

Find the probability of throwing at most 2 sixes in 6 throws of a single die.


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is

(A) 10−1

(B) `(1/2)^5`

(C) `(9/10)^5`

(D) 9/10


A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?


A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.


Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.


Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested exactly 2 will survive .

 

The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .


Suppose X has a binomial distribution with = 6 and \[p = \frac{1}{2} .\]  Show that X = 3 is the most likely outcome.

 
 

From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.


A die is thrown 5 times. Find the probability that an odd number will come up exactly three times. 


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective


Find the binomial distribution when the sum of its mean and variance for 5 trials is 4.8.

 

The mean and variance of a binomial variate with parameters n and p are 16 and 8, respectively. Find P (X = 0), P (X = 1) and P (X ≥ 2).

 

A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

If the sum of the mean and variance of a binomial distribution for 6 trials is \[\frac{10}{3},\]  find the distribution.

 
 

A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.    


If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.

 

If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).

 

If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.  


A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is


A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is


Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is 


One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is


If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals


A coin is tossed 10 times. The probability of getting exactly six heads is


Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?


Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is


One of the condition of Bernoulli trials is that the trials are independent of each other.


If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.


If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:


The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.


An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×