मराठी

Find the Probability Distribution of the Number of Doublets in 4 Throws of a Pair of Dice. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the probability distribution of the number of doublets in 4 throws of a pair of dice.

 
बेरीज

उत्तर

Let X be the number of doublets in 4 throws of a pair of dice.
X follows a binomial distribution with n =4,

\[p = \text{ No of getting } (1, 1)(2, 2) . . . (6, 6) = \frac{6}{36} = \frac{1}{6}\]
\[q = 1 - p = \frac{5}{6}\]
\[P(X = r) = ^ {4}{}{C}_r \left( \frac{1}{6} \right)^r \left( \frac{5}{6} \right)^{4 - r} , r = 0, 1, 2, 3, 4\]
\[P(X = 0) = ^{4}{}{C}_0 \left( \frac{1}{6} \right)^0 \left( \frac{5}{6} \right)^{4 - 0} \]
\[P(X = 1) =^{4}{}{C}_1 \left( \frac{1}{6} \right)^1 \left( \frac{5}{6} \right)^{4 - 1} \]
\[P(X = 2) = ^{4}{}{C}_2 \left( \frac{1}{6} \right)^2 \left( \frac{5}{6} \right)^{4 - 2} \]
\[P(X = 3) = ^{4}{}{C}_3 \left( \frac{1}{6} \right)^3 \left( \frac{5}{6} \right)^{4 - 3} \]
\[P(X = 4) = ^{4}{}{C}_4 \left( \frac{1}{6} \right)^4 \left( \frac{5}{6} \right)^{4 - 4} \]
\[\text{ The distribution is as follows } . \]
   X        0         1        2        3        4 
\[P(X)       \          \frac{625}{1296} \frac{500}{1296} \frac{150}{1296} \frac{20}{1296} \frac{1}{1296}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Exercise 33.1 | Q 22 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A fair coin is tossed 8 times. Find the probability that it shows heads at least once


Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).


On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?


Find the probability of getting 5 exactly twice in 7 throws of a die.


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?


A fair coin is tossed 9 times. Find the probability that it shows head exactly 5 times.


If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).

 

An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.

 

A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.


A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?


An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.

 

Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

In a hospital, there are 20 kidney dialysis machines and the chance of any one of them to be out of service during a day is 0.02. Determine the probability that exactly 3 machines will be out of service on the same day.


The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


Suppose X has a binomial distribution with = 6 and \[p = \frac{1}{2} .\]  Show that X = 3 is the most likely outcome.

 
 

A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize at least twice.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?


Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws. 


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that  more than 8 bulbs work properly                                                                                                                            

 

 


Determine the binomial distribution whose mean is 9 and variance 9/4.

 

An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.   


A fair coin is tossed 100 times. The probability of getting tails an odd number of times is


If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals 


One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is


A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is


Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?


Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-


A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.


If a fair coin is tossed 10 times. Find the probability of getting at most six heads.


The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.


A fair coin is tossed 6 times. Find the probability of getting heads 4 times.


The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.


For the binomial distribution X ∼ B(n, p), n = 6 and P(X = 4) = P(X = 2). find p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×