Advertisements
Advertisements
प्रश्न
A fair coin is tossed 9 times. Find the probability that it shows head exactly 5 times.
उत्तर
Let X = no. of heads shows
n = 9 p = `1/2` q = `1/2`
P(X = x) = `""^nC_x p^n.(q)^(n-x)` X = 0,1.....n
P(X = 5) = `""^9C_5 (1/2)^5(1/2)^4`
`= (9xx8xx7xx6)/(4xx3xx2xx1) xx 1/2^9`
`= 3024/24 xx 1/2^9`
`= 126/2^9`
`= 126/512`
= 0.2460
APPEARS IN
संबंधित प्रश्न
Given that X ~ B(n= 10, p). If E(X) = 8 then the value of
p is ...........
(a) 0.6
(b) 0.7
(c) 0.8
(d) 0.4
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.
Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).
A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?
In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.
Find the probability of throwing at most 2 sixes in 6 throws of a single die.
A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.
The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is
(A) `""^5C_4 (4/5)^4 1/5`
(B) `(4/5)^4 1/5
(C) `""^5C_1 1/5 (4/5)^4 `
(D) None of these
An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.
How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?
Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that all the five cards are spades ?
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?
An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.
Find the probability distribution of the number of sixes in three tosses of a die.
Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.
The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is
\[\frac{28 \times 9^6}{{10}^8} .\]
The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?
The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\] Find the probability that among 5 components tested exactly 2 will survive .
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .
An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.
In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize exactly once.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize at least twice.
The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?
From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.
The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective
A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.
Determine the binomial distribution whose mean is 9 and variance 9/4.
Find the binomial distribution when the sum of its mean and variance for 5 trials is 4.8.
In a binomial distribution the sum and product of the mean and the variance are \[\frac{25}{3}\] and \[\frac{50}{3}\]
respectively. Find the distribution.
In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.
A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.
If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
If in a binomial distribution mean is 5 and variance is 4, write the number of trials.
The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.
If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.
If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.
In a box containing 100 bulbs, 10 are defective. What is the probability that out of a sample of 5 bulbs, none is defective?
If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals
A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is
Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is
Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is
In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is
Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?
Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that only 3 cards are spades ?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use
Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success.
Which one is not a requirement of a binomial distribution?
If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:
If a fair coin is tossed 10 times. Find the probability of getting at most six heads.
An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.
If a random variable X follows the Binomial distribution B (33, p) such that 3P(X = 0) = P(X = 1), then the value of `(P(X = 15))/(P(X = 18)) - (P(X = 16))/(P(X = 17))` is equal to ______.
If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.
An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.