मराठी

In a Box Containing 100 Bulbs, 10 Are Defective. What is the Probability that Out of a Sample of 5 Bulbs, None is Defective? - Mathematics

Advertisements
Advertisements

प्रश्न

In a box containing 100 bulbs, 10 are defective. What is the probability that out of a sample of 5 bulbs, none is defective?

पर्याय

  •  \[\left( \frac{9}{10} \right)^5\] 

  •  \[\frac{9}{10}\]

     
  •  10−5

  •  \[\left( \frac{1}{2} \right)^2\]

     
MCQ

उत्तर

 \[\left( \frac{9}{10} \right)^5\]  

Let X denote the number of defective bulbs.
Hence, the binomial distribution is given by

\[n = 5 , p = \frac{10}{100} = \frac{1}{10}\]
   &  \[ q = \frac{90}{100} = \frac{9}{10}\]
\[\text{ Hence, the distribution is given by } \]
\[P(X = r) = ^{5}{}{C}_r \left( \frac{1}{10} \right)^r \left( \frac{9}{10} \right)^{5 - r} \]
\[ \therefore P(X = 0) = \left( \frac{9}{10} \right)^5\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - MCQ [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
MCQ | Q 1 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Given that X ~ B(n= 10, p). If E(X) = 8 then the value of

p is ...........

(a) 0.6

(b) 0.7

(c) 0.8

(d) 0.4


A fair coin is tossed 8 times. Find the probability that it shows heads at least once


The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is

(A) 10−1

(B) `(1/2)^5`

(C) `(9/10)^5`

(D) 9/10


A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.


A fair coin is tossed 9 times. Find the probability that it shows head exactly 5 times.


Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


Suppose X has a binomial distribution with = 6 and \[p = \frac{1}{2} .\]  Show that X = 3 is the most likely outcome.

 
 

How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?


Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws. 


The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .

 

A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


Determine the binomial distribution whose mean is 9 and variance 9/4.

 

If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.


Find the binomial distribution when the sum of its mean and variance for 5 trials is 4.8.

 

In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.


A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.


A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.    


If in a binomial distribution mean is 5 and variance is 4, write the number of trials.

 

If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).

 

If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.

 
 

An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.   


A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is


A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is


The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is


A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals


A five-digit number is written down at random. The probability that the number is divisible by 5, and no two consecutive digits are identical, is


If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is


Mark the correct alternative in the following question:

The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  only 3 cards are spades ? 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use 


For Bernoulli Distribution, state formula for E(X) and V(X).


Which one is not a requirement of a binomial distribution?


The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is


The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×