Advertisements
Advertisements
प्रश्न
A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is
पर्याय
15/28
2/15
15/213
None of these
उत्तर
15/213
Let X denote the number of heads in a fixed number of tosses of a coin .Then, X is a binomial variate with parameters ,
\[ \therefore P(X = 7) = ^{n}{}{C}_7 (0 . 5 )^n \]
\[ \text{ and} \ P(X = 9) =^{n}{}{C}_9 (0 . 5 )^n \]
\[\text{ It is given that } P(X = 7) = P(X = 9)\]
\[ \therefore ^{n}{}{C}_7 (0 . 5 )^n =^{n}{}{C}_9 (0 . 5 )^n \]
\[ \Rightarrow \frac{n!}{7! \left( n - 7 \right) !} = \frac{n!}{9! \left( n - 9 \right) !}\]
\[ \Rightarrow 9 \times 8 = \left( n - 7 \right)\left( n - 8 \right)\]
\[ \Rightarrow n^2 - 8n - 7n + 56 = 72\]
\[ \Rightarrow n^2 - 15n - 16 = 0\]
\[ \Rightarrow \left( n + 1 \right)\left( n - 16 \right) = 0\]
\[ \Rightarrow n = - 1 \ or \ n = 16 \]
\[ \Rightarrow n = - 1 (\text{ Not possible as n denotes the number of tosses of a coin } )\]
\[ \therefore n = 16 \]
\[\text{ Hence,} \ P(X = 2) = ^{16}{}{C}_2 (0 . 5 )^{16} \]
\[ = \frac{16 . 15}{2} \times \frac{1}{2^{16}}\]
\[ = \frac{15}{2^{13}}\]
APPEARS IN
संबंधित प्रश्न
Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).
Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.
(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)
Find the probability of getting 5 exactly twice in 7 throws of a die.
A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.
Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?
A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use
A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.
The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is
\[\frac{28 \times 9^6}{{10}^8} .\]
An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.
The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\] Find the probability that among 5 components tested exactly 2 will survive .
An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.
The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?
Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws.
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .
A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.
Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]
The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.
If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.
Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is
If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is
A fair die is tossed eight times. The probability that a third six is observed in the eighth throw is
A coin is tossed 10 times. The probability of getting exactly six heads is
Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use
For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p
One of the condition of Bernoulli trials is that the trials are independent of each other.
Which one is not a requirement of a binomial distribution?
The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is
If a fair coin is tossed 10 times. Find the probability of getting at most six heads.
A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.
The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.
If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.