Advertisements
Advertisements
प्रश्न
A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.
उत्तर
Let X be the variable representing number on the ticket bearing a number divisible by 10 out of the 5 tickets drawn.
Then, X follows a binomial distribution with n =5;
\[p = \text{ Probability of getting a ticket bearing number divisible by } 10 . \]
\[ p = \frac{1}{100}(10) = \frac{1}{10}; q = \frac{9}{10}; \]
\[P(X = r) = ^{5}{}{C}_r \left( \frac{1}{10} \right)^r \left( \frac{9}{10} \right)^{5 - r} \]
\[\text{ Probability that all thetickets bear numbers divisible by } 10\]
\[ = P(X = 5) = ^{5}{}{C}_5 \left( \frac{1}{10} \right)^5 \left( \frac{9}{10} \right)^{5 - 5} = \left( \frac{1}{10} \right)^5 \left( \frac{9}{10} \right)^0 = \left( \frac{1}{10} \right)^5 \]
Hence, required probability is \[\left( \frac{1}{10} \right)^5\]
APPEARS IN
संबंधित प्रश्न
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.
Find the probability of getting 5 exactly twice in 7 throws of a die.
A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.
If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.
Find the probability distribution of the number of doublets in 4 throws of a pair of dice.
Find the probability distribution of the number of sixes in three tosses of a die.
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards.
Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.
A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?
Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .
In a 20-question true-false examination, suppose a student tosses a fair coin to determine his answer to each question. For every head, he answers 'true' and for every tail, he answers 'false'. Find the probability that he answers at least 12 questions correctly.
How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?
A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.
Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]
If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.
In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.
If the sum of the mean and variance of a binomial distribution for 6 trials is \[\frac{10}{3},\] find the distribution.
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.
In a box containing 100 bulbs, 10 are defective. What is the probability that out of a sample of 5 bulbs, none is defective?
The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is
A five-digit number is written down at random. The probability that the number is divisible by 5, and no two consecutive digits are identical, is
For a binomial variate X, if n = 3 and P (X = 1) = 8 P (X = 3), then p =
The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is \[\frac{3}{2^{10}}\] , the value of n is
Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that only 3 cards are spades ?
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that none is a spade ?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use
Explain why the experiment of tossing a coin three times is said to have binomial distribution.
A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.
A fair coin is tossed 6 times. Find the probability of getting heads 4 times.
If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.
For the binomial distribution X ∼ B(n, p), n = 6 and P(X = 4) = P(X = 2). find p.