Advertisements
Advertisements
प्रश्न
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.
उत्तर
Let X = number of fuse bulbs.
p = probability of a bulb produced by a factory will fuse after 150 days of use.
∴ p = 0.05 and q = 1 – p = 1 – 0.05 = 0.95
X has a binomial distribution with n = 5 and p = 0.05
∴ X ~ B(5, 0.05)
The p.m.f. of X is given by
P(X = x) = nCx px qn−x
i.e., p(x) = 5Cx (0.05)x (0.95)5−x, x = 0, 1, 2, 3, 4, 5
(i) P(none) = P[X = 0]
= p(0)
= 5C0 (0.05)0 (0.95)5 - 0
= 1 × 1 × (0.95)5
= (0.95)5
Hence, the probability that none of the bulbs will fuse after 150 days = (0.95)5.
(ii) P(not more than one) = P(X ≤ 1)
= p(0) + p(1)
= 5C0 (0.05)0 (0.95)5 - 0 + 5C1 (0.05)1 (0.95)5 - 1
= 5C0 (0.05)0 (0.95)5 + 5C1 (0.05)1 (0.95)4
= 1 × 1 × (0.95)5 + 5 × (0.05) × (0.95)4
= (0.95)4 [0.95 + 5(0.05)]
= (0.95)4 [0.95 + 0.25]
= (0.95)4 (1.20)
= (1.2)(0.95)4
Hence, the probability that not more than one bulb will fuse after 150 days = (1.2)(0.95)4
(iii) P (more than 1) = P(X > 1)
= 1 - P[X ≤ 1]
= 1 - (1.2)(0.95)4
Hence, the probability that more than one bulb fuse after 150 days = 1 – (1.2)(0.95)4.
(iv) P (at least one) = P(X ≥ 1)
= 1 - P[X = 0]
= 1 - p(0)
= 1 - 5C0 (0.05)0 (0.95)5 - 0
= 1 - 1 × 1 × (0.95)5
= 1 - (0.95)5
Hence, the probability that at least one bulb fuses after 150 days = 1 - (0.95)5.
APPEARS IN
संबंधित प्रश्न
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.
There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?
Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that
- all the five cards are spades?
- only 3 cards are spades?
- none is a spade?
On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?
Find the probability of getting 5 exactly twice in 7 throws of a die.
It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?
A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?
A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.
The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?
Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?
If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?
A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.
A bag contains 10 balls, each marked with one of the digits from 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.
Find the probability distribution of the number of doublets in 4 throws of a pair of dice.
Find the probability distribution of the number of sixes in three tosses of a die.
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.
A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.
Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.
An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.
Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?
The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\] Find the probability that among 5 components tested exactly 2 will survive .
Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .
An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.
In a hospital, there are 20 kidney dialysis machines and the chance of any one of them to be out of service during a day is 0.02. Determine the probability that exactly 3 machines will be out of service on the same day.
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university only one will graduate .
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university all will graduate .
Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize exactly once.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize at least twice.
How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?
How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?
From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.
Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws.
The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly
A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.
Determine the binomial distribution whose mean is 9 and variance 9/4.
If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.
Find the binomial distribution when the sum of its mean and variance for 5 trials is 4.8.
Determine the binomial distribution whose mean is 20 and variance 16.
The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.
If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.
If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.
The mean and variance of a binomial variate with parameters n and p are 16 and 8, respectively. Find P (X = 0), P (X = 1) and P (X ≥ 2).
In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.
The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.
A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.
The mean and variance of a binomial distribution are \[\frac{4}{3}\] and \[\frac{8}{9}\] respectively. Find P (X ≥ 1).
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
If in a binomial distribution mean is 5 and variance is 4, write the number of trials.
In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.
The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.
If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.
If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals
A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is
A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is
If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is
If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is
In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is
The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is \[\frac{3}{2^{10}}\] , the value of n is
Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?
Mark the correct alternative in the following question:
The probability that a person is not a swimmer is 0.3. The probability that out of 5 persons 4 are swimmers is
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that only 3 cards are spades ?
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that none is a spade ?
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use
Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success.
Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.
For Bernoulli Distribution, state formula for E(X) and V(X).
Explain why the experiment of tossing a coin three times is said to have binomial distribution.
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.
If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:
If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-
A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.
A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.
If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.
The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.
In three throws with a pair of dice find the chance of throwing doublets at least twice.
A fair coin is tossed 6 times. Find the probability of getting heads 4 times.
An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.
The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.