मराठी

If the Mean and Variance of a Binomial Distribution Are Respectively 9 and 6, Find the Distribution. - Mathematics

Advertisements
Advertisements

प्रश्न

If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.

बेरीज

उत्तर

Given:  Mean = 9 and variance = 6

\[\therefore \text{ np }= 9 . . . (1) \]
\[ \text{ npq }= 6 . . . (2) \]
\[\text{ Dividing eq (2) by eq (1), we get} \]
\[ \text{ q }= \frac{2}{3}\text{ and } \text{ p = 1 - q } = \frac{1}{3}\]
\[\text{ As np = 9, substituting the value of  p, we get}  \]
\[\frac{\text{ n }}{3} = 9 \text{ or } \text{ n } = 27\]
\[\text{ P(X = r) } =^{27}{}{C}_r \left( \frac{1}{3} \right)^r \left( \frac{2}{3} \right)^{27 - r} , r = 0, 1, 2 . . . . 27\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Exercise 33.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Exercise 33.2 | Q 3 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that

  1. all the five cards are spades?
  2. only 3 cards are spades?
  3. none is a spade?

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.


Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.

(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.


Find the probability distribution of the number of sixes in three tosses of a die.

 

An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.

 

A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested exactly 2 will survive .

 

It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .

 

An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?

 

The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.


If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

If the sum of the mean and variance of a binomial distribution for 6 trials is \[\frac{10}{3},\]  find the distribution.

 
 

A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.    


If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).

 

A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is


If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals 


Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is 


One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is


A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals


If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is


 Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success. 


For Bernoulli Distribution, state formula for E(X) and V(X).


Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.


The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is


A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.


An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.


If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.


An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×