Advertisements
Advertisements
प्रश्न
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
उत्तर
The repeated tosses of a pair of dice are Bernoulli trials. Let X denote the number of times of getting doublets in an experiment of throwing two dice simultaneously four times.
Probability of getting doublets in a single throw of the pair of dice is
APPEARS IN
संबंधित प्रश्न
Given that X ~ B(n= 10, p). If E(X) = 8 then the value of
p is ...........
(a) 0.6
(b) 0.7
(c) 0.8
(d) 0.4
Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).
On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?
Find the probability of throwing at most 2 sixes in 6 throws of a single die.
A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.
If getting 5 or 6 in a throw of an unbiased die is a success and the random variable X denotes the number of successes in six throws of the die, find P (X ≥ 4).
A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.
Find the probability distribution of the number of sixes in three tosses of a die.
Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.
Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?
The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\] Find the probability that among 5 components tested at most 3 will survive .
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .
Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.
From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.
Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws.
A die is thrown 5 times. Find the probability that an odd number will come up exactly three times.
The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?
Can the mean of a binomial distribution be less than its variance?
Determine the binomial distribution whose mean is 20 and variance 16.
The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.
If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.
Find the expected number of boys in a family with 8 children, assuming the sex distribution to be equally probable.
A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.
The mean and variance of a binomial distribution are \[\frac{4}{3}\] and \[\frac{8}{9}\] respectively. Find P (X ≥ 1).
If the sum of the mean and variance of a binomial distribution for 6 trials is \[\frac{10}{3},\] find the distribution.
If the mean and variance of a random variable X with a binomial distribution are 4 and 2 respectively, find P (X = 1).
If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).
If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.
A fair die is tossed eight times. The probability that a third six is observed in the eighth throw is
Mark the correct alternative in the following question:
Which one is not a requirement of a binomial dstribution?
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?
If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.
If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:
If the coefficients of x7 and x8 in `(2 + x/3)^n` are equal, then n is
If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.
An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.