Advertisements
Advertisements
प्रश्न
A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.
उत्तर
Here, n =3
\[\text{ p }= \text{ probability of getting } \ 1 \ \text{ or }\ 6 = \frac{1}{3}\]
\[\text{ and } \text{ q }= 1 - \frac{1}{3} = \frac{2}{3}\]
\[\text{ Mean } = \text{ np }= 1\]
\[\text{ Variance } = \text{ npq }= \frac{2}{3}\]
APPEARS IN
संबंधित प्रश्न
Given that X ~ B(n= 10, p). If E(X) = 8 then the value of
p is ...........
(a) 0.6
(b) 0.7
(c) 0.8
(d) 0.4
There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is
(A) 10−1
(B) `(1/2)^5`
(C) `(9/10)^5`
(D) 9/10
A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.
How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?
A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?
An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.
Find the probability distribution of the number of doublets in 4 throws of a pair of dice.
Find the probability distribution of the number of sixes in three tosses of a die.
The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university all will graduate .
From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.
If on an average 9 ships out of 10 arrive safely at ports, find the mean and S.D. of the ships returning safely out of a total of 500 ships.
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
If the mean and variance of a random variable X with a binomial distribution are 4 and 2 respectively, find P (X = 1).
If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).
If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals
If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is
Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is
Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?
Mark the correct alternative in the following question:
Which one is not a requirement of a binomial dstribution?
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use
Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success.
For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p
One of the condition of Bernoulli trials is that the trials are independent of each other.
Which one is not a requirement of a binomial distribution?
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.
If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.
A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.
In three throws with a pair of dice find the chance of throwing doublets at least twice.
A fair coin is tossed 8 times. Find the probability that it shows heads at most once.
A fair coin is tossed 6 times. Find the probability of getting heads 4 times.