Advertisements
Advertisements
Question
A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.
Solution
Here, n =3
\[\text{ p }= \text{ probability of getting } \ 1 \ \text{ or }\ 6 = \frac{1}{3}\]
\[\text{ and } \text{ q }= 1 - \frac{1}{3} = \frac{2}{3}\]
\[\text{ Mean } = \text{ np }= 1\]
\[\text{ Variance } = \text{ npq }= \frac{2}{3}\]
APPEARS IN
RELATED QUESTIONS
A fair coin is tossed 8 times. Find the probability that it shows heads at least once
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.
There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?
In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.
The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is
(A) `""^5C_4 (4/5)^4 1/5`
(B) `(4/5)^4 1/5
(C) `""^5C_1 1/5 (4/5)^4 `
(D) None of these
The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?
A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.
Find the probability distribution of the number of sixes in three tosses of a die.
Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.
The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\] Find the probability that among 5 components tested at most 3 will survive .
In a hospital, there are 20 kidney dialysis machines and the chance of any one of them to be out of service during a day is 0.02. Determine the probability that exactly 3 machines will be out of service on the same day.
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate
Suppose X has a binomial distribution with n = 6 and \[p = \frac{1}{2} .\] Show that X = 3 is the most likely outcome.
From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.
Determine the binomial distribution whose mean is 9 and variance 9/4.
Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]
In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.
In a binomial distribution, if n = 20 and q = 0.75, then write its mean.
In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.
If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
A coin is tossed 10 times. The probability of getting exactly six heads is
If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is
In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is
A coin is tossed 4 times. The probability that at least one head turns up is
For a binomial variate X, if n = 3 and P (X = 1) = 8 P (X = 3), then p =
The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is \[\frac{3}{2^{10}}\] , the value of n is
If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.
The mean, median and mode for binomial distribution will be equal when
If the coefficients of x7 and x8 in `(2 + x/3)^n` are equal, then n is
If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.
If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.
The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.