मराठी

The Probability that an Item Produced by a Factory is Defective is 0.02. a Shipment of 10,000 Items is Sent to Its Warehouse. Find the Expected Number of Defective Items and the Standard Deviation. - Mathematics

Advertisements
Advertisements

प्रश्न

The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.

उत्तर

Here, n =10,000
Let (the probability of getting a defective item) = 0.02
q =1-0.02 = 0.98

\[\text{Mean = Expected number of defective items } \]

\[ \Rightarrow np = 200\]

\[\text{ Variance}  (npq) = 200(0 . 98) \]

\[ = 196\]

\[\text{ Standard deviation } = \sqrt{\text{ Variance } } = 14\]

\[\text{ So, mean = 200 and standard deviation } = 14\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Exercise 33.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Exercise 33.2 | Q 14 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Given that X ~ B(n= 10, p). If E(X) = 8 then the value of

p is ...........

(a) 0.6

(b) 0.7

(c) 0.8

(d) 0.4


Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.

(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)


An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 90%?



Five cards are drawn one by one, with replacement, from a well-shuffled deck of 52 cards. Find the probability that
(i) all the five cards diamonds
(ii) only 3 cards are diamonds
(iii) none is a diamond


Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?


A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?


A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.


Find the probability distribution of the number of doublets in 4 throws of a pair of dice.

 

Find the probability distribution of the number of sixes in three tosses of a die.

 

In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.


The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


Can the mean of a binomial distribution be less than its variance?

 

If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.


A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.    


In a binomial distribution, if n = 20 and q = 0.75, then write its mean.

 

The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.

 

If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.

 

A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is


If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals 


The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is


If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is


Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is


The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is  \[\frac{3}{2^{10}}\] , the value of n is

 


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  only 3 cards are spades ? 


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  none is a spade ?


Which one is not a requirement of a binomial distribution?


The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is


If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-


A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.


The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.


If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.


In three throws with a pair of dice find the chance of throwing doublets at least twice.


A fair coin is tossed 6 times. Find the probability of getting heads 4 times.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×