मराठी

In a Binomial Distribution, If N = 20 and Q = 0.75, Then Write Its Mean. - Mathematics

Advertisements
Advertisements

प्रश्न

In a binomial distribution, if n = 20 and q = 0.75, then write its mean.

 

उत्तर

n= 20 , q =0.75

\[\Rightarrow p = 1 - q = 0 . 25\]
\[\text{ Mean = np } = 20(0 . 25) = 5\]
\[\text{ Thus, mean } = 5\] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Very Short Answers [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Very Short Answers | Q 1 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.


Suppose X has a binomial distribution `B(6, 1/2)`. Show that X = 3 is the most likely outcome.

(Hint: P(X = 3) is the maximum among all P (xi), xi = 0, 1, 2, 3, 4, 5, 6)


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?


An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.



Five cards are drawn one by one, with replacement, from a well-shuffled deck of 52 cards. Find the probability that
(i) all the five cards diamonds
(ii) only 3 cards are diamonds
(iii) none is a diamond


Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.

 

Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that all the five cards are spades ?



An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.

 

A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once. 


From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective


Can the mean of a binomial distribution be less than its variance?

 

In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.


If the mean and variance of a random variable X with a binomial distribution are 4 and 2 respectively, find P (X = 1).

 

If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.

 
 

If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.  


A fair coin is tossed 100 times. The probability of getting tails an odd number of times is


Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is 


A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals


If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals


In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is


The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is  \[\frac{3}{2^{10}}\] , the value of n is

 


Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs not more than one will fuse after 150 days of use 


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use 


Bernoulli distribution is a particular case of binomial distribution if n = ______


For Bernoulli Distribution, state formula for E(X) and V(X).


If the coefficients of x7 and x8 in `(2 + x/3)^n` are equal, then n is


If a fair coin is tossed 10 times. Find the probability of getting at most six heads.


In three throws with a pair of dice find the chance of throwing doublets at least twice.


An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.


The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×