Advertisements
Advertisements
प्रश्न
Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.
उत्तर
Let X be the random variable denoting the number of bad oranges drawn.
P (getting a good orange) = \[\frac{20}{25} = \frac{4}{5}\]
P (getting a bad orange) = \[\frac{5}{25} = \frac{1}{5}\]
The probability distribution of X is given by
X | 0 | 1 | 2 | 3 | 4 |
P(X) |
\[\left( \frac{4}{5} \right)^4\]
=\[\frac{256}{625}\] |
\[^{4}{}{C}_1 \left( \frac{4}{5} \right)^3 \left( \frac{1}{5} \right)\]
=\[\frac{256}{625}\]
|
\[^{4}{}{C}_2 \left( \frac{4}{5} \right)^2 \left( \frac{1}{5} \right)^2\]
=\[\frac{96}{625}\] |
\[^{4}{}{C}_3 \left( \frac{4}{5} \right) \left( \frac{1}{5} \right)^3\]
=\[\frac{16}{625}\] |
\[\left( \frac{1}{5} \right)^4\]
=\[\frac{1}{625}\] |
Mean of X is given by
\[\overline{X} = \sum P_i X_i\]
\[= 0 \times \frac{256}{625} + 1 \times \frac{256}{625} + 2 \times \frac{96}{625} + 3 \times \frac{16}{625} + 4 \times \frac{1}{625}\]
\[ = \frac{1}{625}\left( 256 + 192 + 48 + 4 \right)\]
\[ = \frac{4}{5}\]
Variance of X is given by \[\text{ Var } (X) = \sum P_i {X_i}^2 - \left( \sum P_i X_i \right)^2\]
\[= 0 \times \frac{256}{625} + 1 \times \frac{256}{625} + 4 \times \frac{96}{625} + 9 \times \frac{16}{625} + 16 \times \frac{1}{625} - \left( \frac{4}{5} \right)^2 \]
\[ = \frac{1}{625}\left( 256 + 384 + 144 + 16 \right) - \frac{16}{25}\]
\[ = \frac{800}{625} - \frac{16}{25}\]
\[ = \frac{400}{625}\]
\[ = \frac{16}{25}\]
Thus, the mean and vairance of the distribution are \[\frac{4}{5}\] and \[\frac{16}{25}\] , respectively.
APPEARS IN
संबंधित प्रश्न
State the following are not the probability distributions of a random variable. Give reasons for your answer.
Y | -1 | 0 | 1 |
P(Y) | 0.6 | 0.1 | 0.2 |
Find the probability distribution of number of tails in the simultaneous tosses of three coins.
Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.
Two numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and variance of X
Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
Five defective mangoes are accidently mixed with 15 good ones. Four mangoes are drawn at random from this lot. Find the probability distribution of the number of defective mangoes.
Two dice are thrown together and the number appearing on them noted. X denotes the sum of the two numbers. Assuming that all the 36 outcomes are equally likely, what is the probability distribution of X?
Two cards are drawn successively with replacement from well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs.
Find the mean and standard deviation of each of the following probability distribution :
xi: | 0 | 1 | 3 | 5 |
pi : | 0.2 | 0.5 | 0.2 | 0.1 |
A discrete random variable X has the probability distribution given below:
X: | 0.5 | 1 | 1.5 | 2 |
P(X): | k | k2 | 2k2 | k |
Determine the mean of the distribution.
Find the mean variance and standard deviation of the following probability distribution
xi : | a | b |
pi : | p | q |
Two cards are drawn simultaneously from a pack of 52 cards. Compute the mean and standard deviation of the number of kings.
A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.
Write the values of 'a' for which the following distribution of probabilities becomes a probability distribution:
X= xi: | -2 | -1 | 0 | 1 |
P(X= xi) : |
\[\frac{1 - a}{4}\]
|
\[\frac{1 + 2a}{4}\]
|
\[\frac{1 - 2a}{4}\]
|
\[\frac{1 + a}{4}\]
|
If the probability distribution of a random variable X is given by Write the value of k.
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | 2k | 4k | 3k | k |
Find the mean of the following probability distribution:
X= xi: | 1 | 2 | 3 |
P(X= xi) : |
\[\frac{1}{4}\]
|
\[\frac{1}{8}\]
|
\[\frac{5}{8}\]
|
From a lot of 15 bulbs which include 5 defective, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence, find the mean of the distribution.
Demand function x, for a certain commodity is given as x = 200 - 4p where p is the unit price. Find :
(a) elasticity of demand as function of p.
(b) elasticity of demand when p = 10 , interpret your result.
If the demand function is D = 150 - p2 - 3p, find marginal revenue, average revenue and elasticity of demand for price p = 3.
The following data gives the marks of 20 students in mathematics (X) and statistics (Y) each out of 10, expressed as (x, y). construct ungrouped frequency distribution considering single number as a class :
(2, 7) (3, 8) (4, 9) (2, 8) (2, 8) (5, 6) (5 , 7) (4, 9) (3, 8) (4, 8) (2, 9) (3, 8) (4, 8) (5, 6) (4, 7) (4, 7) (4, 6 ) (5, 6) (5, 7 ) (4, 6 )
Compute the age specific death rate for the following data :
Age group (years) | Population (in thousands) | Number of deaths |
Below 5 | 15 | 360 |
5-30 | 20 | 400 |
Above 30 | 10 | 280 |
A random variable X has the following probability distribution :
X = x | -2 | -1 | 0 | 1 | 2 | 3 |
P(x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
Find the value of k and calculate mean.
The expenditure Ec of a person with income I is given by Ec = (0.000035) I2 + (0. 045) I. Find marginal propensity to consume (MPC) and average propensity to consume (APC) when I = 5000.
From the following data, find the crude death rates (C.D.R.) for Town I and Town II, and comment on the results :
Age Group (in years) | Town I | Town II | ||
Population | No. of deaths | Population | No. of deaths | |
0-10 | 1500 | 45 | 6000 | 150 |
10-25 | 5000 | 30 | 6000 | 40 |
25 - 45 | 3000 | 15 | 5000 | 20 |
45 & above | 500 | 22 | 3000 | 54 |
Amit and Rohit started a business by investing ₹20,000 each. After 3 months Amit withdrew ₹5,000 and Rohit put in ₹5,000 additionally. How should a profit of ₹12,800 be divided between them at the end of the year?
A card is drawn at random and replaced four times from a well shuftled pack of 52 cards. Find the probability that -
(a) Two diamond cards are drawn.
(b) At least one diamond card is drawn.
The p.d.f. of a continuous r.v. X is given by
f (x) = `1/ (2a)` , for 0 < x < 2a and = 0, otherwise. Show that `P [X < a/ 2] = P [X >( 3a)/ 2]` .
A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. If X denotes the age of a randomly selected student, find the probability distribution of X. Find the mean and variance of X.
10 balls are marked with digits 0 to 9. If four balls are selected with replacement. What is the probability that none is marked 0?
Solve the following problem :
The probability that a bomb will hit the target is 0.8. Find the probability that, out of 5 bombs, exactly 2 will miss the target.
Solve the following problem :
A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 1 terminal requires attention during a week.
For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______
The probability distribution of a discrete random variable X is given as under:
X | 1 | 2 | 4 | 2A | 3A | 5A |
P(X) | `1/2` | `1/5` | `3/25` | `1/10` | `1/25` | `1/25` |
Calculate: The value of A if E(X) = 2.94
Find the mean number of defective items in a sample of two items drawn one-by-one without replacement from an urn containing 6 items, which include 2 defective items. Assume that the items are identical in shape and size.
Two numbers are selected from first six even natural numbers at random without replacement. If X denotes the greater of two numbers selected, find the probability distribution of X.
A primary school teacher wants to teach the concept of 'larger number' to the students of Class II.
To teach this concept, he conducts an activity in his class. He asks the children to select two numbers from a set of numbers given as 2, 3, 4, 5 one after the other without replacement.
All the outcomes of this activity are tabulated in the form of ordered pairs given below:
2 | 3 | 4 | 5 | |
2 | (2, 2) | (2, 3) | (2, 4) | |
3 | (3, 2) | (3, 3) | (3, 5) | |
4 | (4, 2) | (4, 4) | (4, 5) | |
5 | (5, 3) | (5, 4) | (5, 5) |
- Complete the table given above.
- Find the total number of ordered pairs having one larger number.
- Let the random variable X denote the larger of two numbers in the ordered pair.
Now, complete the probability distribution table for X given below.
X 3 4 5 P(X = x) - Find the value of P(X < 5)
- Calculate the expected value of the probability distribution.
Five numbers x1, x2, x3, x4, x5 are randomly selected from the numbers 1, 2, 3, ......., 18 and are arranged in the increasing order such that x1 < x2 < x3 < x4 < x5. What is the probability that x2 = 7 and x4 = 11?