Advertisements
Advertisements
प्रश्न
An urn contains 3 white and 6 red balls. Four balls are drawn one by one with replacement from the urn. Find the probability distribution of the number of red balls drawn. Also find mean and variance of the distribution.
उत्तर
Let X denote the total number of red balls when four balls are drawn one by one with replacement.
P (getting a red ball in one draw) = \[\frac{2}{3}\]
P (getting a white ball in one draw) = \[\frac{1}{3}\]
X | 0 | 1 | 2 | 3 | 4 |
P(X) |
\[\left( \frac{1}{3} \right)^4\]
|
\[\frac{2}{3} \left( \frac{1}{3} \right)^3 . ^ {4}{}{C}_1\]
|
\[\left( \frac{2}{3} \right)^2 \left( \frac{1}{3} \right)^2 . ^{4}{}{C}_2\]
|
\[\left( \frac{2}{3} \right)^3 \left( \frac{1}{3} \right) . ^{4}{}{C}_3\]
|
\[\left( \frac{2}{3} \right)^4\]
|
\[\frac{1}{81}\]
|
\[\frac{8}{81}\]
|
\[\frac{24}{81}\]
|
\[\frac{32}{81}\]
|
\[\frac{16}{81}\]
|
Using the formula for mean, we have
\[\text{ Mean } ( \bar{X}) = \left( 0 \times \frac{1}{81} \right) + 1 \left( \frac{8}{81} \right) + 2\left( \frac{24}{81} \right) + 3 \left( \frac{32}{81} \right) + 4 \left( \frac{16}{81} \right)\]
\[ = \frac{1}{81}\left( 8 + 48 + 96 + 64 \right)\]
\[ = \frac{216}{81}\]
\[ = \frac{8}{3}\]
Using the formula for variance, we have
\[\text{ Var } (X) = \sum P_i {X_i}^2 - \left( \sum P_i X_i \right)^2\]
\[\text{ Var } (X) = \left\{ \left( 0 \times \frac{1}{81} \right) + 1 \left( \frac{8}{81} \right) + 4\left( \frac{24}{81} \right) + 9 \left( \frac{32}{81} \right) + 16 \left( \frac{16}{81} \right) \right\} - \left( \frac{8}{3} \right)^2 \]
\[ = \frac{648}{81} - \frac{64}{9}\]
\[ = \frac{8}{9}\]
Hence, the mean of the distribution is \[\frac{8}{3}\] and the variance of the distribution is \[\frac{8}{9}\] .
APPEARS IN
संबंधित प्रश्न
Probability distribution of X is given by
X = x | 1 | 2 | 3 | 4 |
P(X = x) | 0.1 | 0.3 | 0.4 | 0.2 |
Find P(X ≥ 2) and obtain cumulative distribution function of X
State the following are not the probability distributions of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P (X) | 0.4 | 0.4 | 0.2 |
Find the probability distribution of number of tails in the simultaneous tosses of three coins.
The random variable X has probability distribution P(X) of the following form, where k is some number:
`P(X = x) {(k, if x = 0),(2k, if x = 1),(3k, if x = 2),(0, "otherwise"):}`
- Determine the value of 'k'.
- Find P(X < 2), P(X ≥ 2), P(X ≤ 2).
Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in x number of colleges. It is given that
where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: P (X < 2)
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Determine the value of k .
Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in x number of colleges. It is given that
where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.
Find the mean and standard deviation of each of the following probability distribution :
xi : | 0 | 1 | 2 | 3 | 4 | 5 |
pi : |
\[\frac{1}{6}\]
|
\[\frac{5}{18}\]
|
\[\frac{2}{9}\]
|
\[\frac{1}{6}\]
|
\[\frac{1}{9}\]
|
\[\frac{1}{18}\]
|
A fair coin is tossed four times. Let X denote the number of heads occurring. Find the probability distribution, mean and variance of X.
In roulette, Figure, the wheel has 13 numbers 0, 1, 2, ...., 12 marked on equally spaced slots. A player sets Rs 10 on a given number. He receives Rs 100 from the organiser of the game if the ball comes to rest in this slot; otherwise he gets nothing. If X denotes the player's net gain/loss, find E (X).
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
If X denotes the number on the upper face of a cubical die when it is thrown, find the mean of X.
If the probability distribution of a random variable X is as given below:
Write the value of P (X ≤ 2).
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | c | 2c | 4c | 4c |
A random variable has the following probability distribution:
X = xi : | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P (X = xi) : | 0 | 2 p | 2 p | 3 p | p2 | 2 p2 | 7 p2 | 2 p |
The value of p is
Find the probability distribution of the number of doublets in three throws of a pair of dice and find its mean.
From a lot of 15 bulbs which include 5 defective, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence, find the mean of the distribution.
The expenditure Ec of a person with income I is given by Ec = (0.000035) I2 + (0. 045) I. Find marginal propensity to consume (MPC) and average propensity to consume (APC) when I = 5000.
The p.m.f. of a random variable X is
`"P"(x) = 1/5` , for x = I, 2, 3, 4, 5
= 0 , otherwise.
Find E(X).
Solve the following :
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
20 white rats are available for an experiment. Twelve rats are male. Scientist randomly selects 5 rats number of female rats selected on a specific day
Solve the following:
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
A highway safety group is interested in studying the speed (km/hrs) of a car at a check point.
Determine whether each of the following is a probability distribution. Give reasons for your answer.
z | 3 | 2 | 1 | 0 | -1 |
P(z) | 0.3 | 0.2 | 0.4. | 0.05 | 0.05 |
A coin is biased so that the head is 3 times as likely to occur as tail. Find the probability distribution of number of tails in two tosses.
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of 2 successes
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X = 0
In a multiple choice test with three possible answers for each of the five questions, what is the probability of a candidate getting four or more correct answers by random choice?
Solve the following problem :
If a fair coin is tossed 4 times, find the probability that it shows 3 heads
Solve the following problem :
It is observed that it rains on 10 days out of 30 days. Find the probability that it rains on at most 2 days of a week.
For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______
A discrete random variable X has the probability distribution given as below:
X | 0.5 | 1 | 1.5 | 2 |
P(X) | k | k2 | 2k2 | k |
Determine the mean of the distribution.
Consider the probability distribution of a random variable X:
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.25 | 0.3 | 0.2 | 0.15 |
Variance of X.
The probability distribution of a random variable X is given below:
X | 0 | 1 | 2 | 3 |
P(X) | k | `"k"/2` | `"k"/4` | `"k"/8` |
Find P(X ≤ 2) + P (X > 2)
Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1), "for" x = 1"," 2"," 3"," 4),(2"k"x, "for" x = 5"," 6"," 7),(0, "Otherwise"):}`
where k is a constant. Calculate the value of k
The probability distribution of a discrete random variable X is given as under:
X | 1 | 2 | 4 | 2A | 3A | 5A |
P(X) | `1/2` | `1/5` | `3/25` | `1/10` | `1/25` | `1/25` |
Calculate: Variance of X
Find the mean number of defective items in a sample of two items drawn one-by-one without replacement from an urn containing 6 items, which include 2 defective items. Assume that the items are identical in shape and size.
Two numbers are selected from first six even natural numbers at random without replacement. If X denotes the greater of two numbers selected, find the probability distribution of X.