मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

A coin is biased so that the head is 3 times as likely to occur as tail. Find the probability distribution of number of tails in two tosses. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A coin is biased so that the head is 3 times as likely to occur as tail. Find the probability distribution of number of tails in two tosses.

बेरीज

उत्तर

Let X denote the number of tails.
∴ Possible values of X are 0, 1, 2.
Let P(getting tail) = p
According to the given condition,
P(getting head) = q = 3p
As p + q = 1,
p + 3p = 1

∴ p = `(1)/(4)  "and " "q" = (3)/(4)`

∴ P(X = 0) = P(no tails) = qq = q2 = `(3/4)^2 = (9)/(16)`

P(X = 1) = P(one tail) = pq + qp = 2pq = `2(1/4)(3/4) = (6)/(16)`

P(X = 2) = P(two tails) = pp = p2 = `(1/4)^2 = (1)/(6)`

∴ Probability distribution of X is as follows:

X 0 1 2
P(X = x) `(9)/(16)` `(6)/(16)` `(1)/(16)`
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Probability Distributions - Exercise 8.1 [पृष्ठ १४१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Probability Distributions
Exercise 8.1 | Q 7 | पृष्ठ १४१

संबंधित प्रश्‍न

State the following are not the probability distributions of a random variable. Give reasons for your answer.

Y -1 0 1
P(Y) 0.6 0.1 0.2

Find the probability distribution of number of tails in the simultaneous tosses of three coins.


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as

(i) number greater than 4

(ii) six appears on at least one die


A random variable X ~ N (0, 1). Find P(X > 0) and P(X < 0).


There are 4 cards numbered 1 to 4, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.


Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.


A random variable X has the following probability distribution:

Values of X : −2 −1 0 1 2 3
P (X) : 0.1 k 0.2 2k 0.3 k
 

Find the value of k


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1
 

where c > 0 Find:  c 


Let X be a random variable which assumes values x1, x2, x3, x4 such that 2P (X = x1) = 3P(X = x2) = P (X = x3) = 5 P (X = x4). Find the probability distribution of X.                                                                                                                                                                                 


A random variable X takes the values 0, 1, 2 and 3 such that: 

P (X = 0) = P (X > 0) = P (X < 0); P (X = −3) = P (X = −2) = P (X = −1); P (X = 1) = P (X = 2) = P (X = 3) .  Obtain the probability distribution of X


An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls with replacement.


Two cards are drawn simultaneously from a well-shuffled deck of 52 cards. Find the probability distribution of the number of successes, when getting a spade is considered a success. 


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

 Find P(X ≤ 2) + P(X > 2) .

 

Find the mean and standard deviation of each of the following probability distribution :

xi: 0 1 3 5
pi :  0.2 0.5 0.2 0.1

Find the mean and standard deviation of each of the following probability distribution :

xi :  -3 -1 0 1 3
pi :  0.05 0.45 0.20 0.25 0.05

A discrete random variable X has the probability distribution given below:

X: 0.5 1 1.5 2
P(X): k k2 2k2 k

Determine the mean of the distribution.                


An urn contains 5 red and 2 black balls. Two balls are randomly drawn, without replacement. Let X represent the number of black balls drawn. What are the possible values of X ? Is X a random variable ? If yes, then find the mean and variance of X.      


In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses.

 

Mark the correct alternative in the following question:
Let X be a discrete random variable. Then the variance of X is                

 

 


A departmental store gives trafnfng to the salesmen in service followed by a test. It is experienced that the performance regarding sales of any salesman is linearly related to the scores secured by him. The following data gives the test scores and sales made by nine (9) salesmen during a fixed period. 

Test scores (X)  16 22 28 24 29 25 16 23 24
Sales (Y) (₹ in hundreds) 35 42 57 40 54 51 34 47 45

(a) Obtain the line of regression of Y on X.
(b) Estimate Y when X = 17. 


A fair coin is tossed 12 times. Find the probability of getting  at least 2 heads .


The p.d.f. of r.v. of X is given by

f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .

Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.4 0.4 0.2

A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.


There are 10% defective items in a large bulk of items. What is the probability that a sample of 4 items will include not more than one defective item?


In a multiple choice test with three possible answers for each of the five questions, what is the probability of a candidate getting four or more correct answers by random choice?


State whether the following is True or False :

If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.


Solve the following problem :

Following is the probability distribution of a r.v.X.

x – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is even.


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as six appears in at least one toss.


Solve the following problem :

In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.

Find the probability that the visitor obtains the answer yes from at least 3 students.


For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______


A discrete random variable X has the probability distribution given as below:

X 0.5 1 1.5 2
P(X) k k2 2k2 k

Find the value of k


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Determine the value of k.


Two biased dice are thrown together. For the first die P(6) = `1/2`, the other scores being equally likely while for the second die, P(1) = `2/5` and the other scores are equally likely. Find the probability distribution of ‘the number of ones seen’.


Two probability distributions of the discrete random variable X and Y are given below.

X 0 1 2 3
P(X) `1/5` `2/5` `1/5` `1/5`

 

Y 0 1 2 3
P(Y) `1/5` `3/10` `2/10` `1/10`

Prove that E(Y2) = 2E(X).


For the following probability distribution:

X 1 2 3 4
P(X) `1/10` `3/10` `3/10` `2/5`

E(X2) is equal to ______.


Find the mean of number randomly selected from 1 to 15.


A primary school teacher wants to teach the concept of 'larger number' to the students of Class II. 

To teach this concept, he conducts an activity in his class. He asks the children to select two numbers from a set of numbers given as 2, 3, 4, 5 one after the other without replacement.

All the outcomes of this activity are tabulated in the form of ordered pairs given below:

  2 3 4 5
2 (2, 2) (2, 3) (2, 4)  
3 (3, 2) (3, 3)   (3, 5)
4 (4, 2)   (4, 4) (4, 5)
5   (5, 3) (5, 4) (5, 5)
  1. Complete the table given above.
  2. Find the total number of ordered pairs having one larger number.
  3. Let the random variable X denote the larger of two numbers in the ordered pair.
    Now, complete the probability distribution table for X given below.
    X 3 4 5
    P(X = x)      
  4. Find the value of P(X < 5)
  5. Calculate the expected value of the probability distribution.

Five numbers x1, x2, x3, x4, x5 are randomly selected from the numbers 1, 2, 3, ......., 18 and are arranged in the increasing order such that x1 < x2 < x3 < x4 < x5. What is the probability that x2 = 7 and x4 = 11?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×