Advertisements
Advertisements
प्रश्न
Find the mean and standard deviation of each of the following probability distribution :
xi: | 0 | 1 | 3 | 5 |
pi : | 0.2 | 0.5 | 0.2 | 0.1 |
उत्तर
xi | pi | pixi | pixi2 |
0 | 0.2 | 0 | 0 |
1 | 0.5 | 0.5 | 0.5 |
3 | 0.2 | 0.6 | 1.8 |
5 | 0.1 | 0.5 | 2.5 |
`∑`pixi = 1.6 |
`∑`pixi2=4.8 |
\[\text{ Mean } = \sum p_i x_i = 1 . 6\]
\[\text{ Variance } = \sum p_i {x_i}2^{}_{} - \left( \text{ Mean } \right)^2 \]
\[ = 4 . 8 - 1 . 6^2 \]
\[ = 2 . 24\]
\[\text{ Step Deviation } = \sqrt{\text{ Variance} }\]
\[ = \sqrt{2 . 24}\]
\[ = 1 . 497\]
APPEARS IN
संबंधित प्रश्न
Probability distribution of X is given by
X = x | 1 | 2 | 3 | 4 |
P(X = x) | 0.1 | 0.3 | 0.4 | 0.2 |
Find P(X ≥ 2) and obtain cumulative distribution function of X
A random variable X has the following probability distribution.
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X) | 0 | k | 2k | 2k | 3k | k2 |
2k2 |
7k2 + k |
Determine
(i) k
(ii) P (X < 3)
(iii) P (X > 6)
(iv) P (0 < X < 3)
Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.
Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is
(A) `37/221`
(B) 5/13
(C) 1/13
(D) 2/13
Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in x number of colleges. It is given that
where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.
Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.
Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.
Three cards are drawn successively with replacement from a well-shuffled deck of 52 cards. A random variable X denotes the number of hearts in the three cards drawn. Determine the probability distribution of X.
Two cards are drawn simultaneously from a well-shuffled deck of 52 cards. Find the probability distribution of the number of successes, when getting a spade is considered a success.
From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs.
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, then find the probability distribution of X.
Find the mean and standard deviation of each of the following probability distribution :
xi : | 0 | 1 | 2 | 3 | 4 | 5 |
pi : |
\[\frac{1}{6}\]
|
\[\frac{5}{18}\]
|
\[\frac{2}{9}\]
|
\[\frac{1}{6}\]
|
\[\frac{1}{9}\]
|
\[\frac{1}{18}\]
|
A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.
Write the values of 'a' for which the following distribution of probabilities becomes a probability distribution:
X= xi: | -2 | -1 | 0 | 1 |
P(X= xi) : |
\[\frac{1 - a}{4}\]
|
\[\frac{1 + 2a}{4}\]
|
\[\frac{1 - 2a}{4}\]
|
\[\frac{1 + a}{4}\]
|
A random variable has the following probability distribution:
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | k | 2k | 3k | 4k |
Write the value of P (X ≥ 3).
If X is a random-variable with probability distribution as given below:
X = xi : | 0 | 1 | 2 | 3 |
P (X = xi) : | k | 3 k | 3 k | k |
The value of k and its variance are
Mark the correct alternative in the following question:
Let X be a discrete random variable. Then the variance of X is
For the following probability density function (p. d. f) of X, find P(X < 1) and P(|x| < 1)
`f(x) = x^2/18, -3 < x < 3`
= 0, otherwise
Demand function x, for a certain commodity is given as x = 200 - 4p where p is the unit price. Find :
(a) elasticity of demand as function of p.
(b) elasticity of demand when p = 10 , interpret your result.
A fair coin is tossed 12 times. Find the probability of getting exactly 7 heads .
The p.m.f. of a random variable X is
`"P"(x) = 1/5` , for x = I, 2, 3, 4, 5
= 0 , otherwise.
Find E(X).
Amit and Rohit started a business by investing ₹20,000 each. After 3 months Amit withdrew ₹5,000 and Rohit put in ₹5,000 additionally. How should a profit of ₹12,800 be divided between them at the end of the year?
An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black balls drawn. What are possible values of X?
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 | 3 | 4 |
P(x) | 0.1 | 0.5 | 0.2 | –0.1 | 0.3 |
A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. If X denotes the age of a randomly selected student, find the probability distribution of X. Find the mean and variance of X.
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1
10 balls are marked with digits 0 to 9. If four balls are selected with replacement. What is the probability that none is marked 0?
Solve the following problem :
The probability that a machine will produce all bolts in a production run within the specification is 0.9. A sample of 3 machines is taken at random. Calculate the probability that all machines will produce all bolts in a production run within the specification.
Solve the following problem :
A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 1 terminal requires attention during a week.
A random variable X has the following probability distribution
X | 2 | 3 | 4 |
P(x) | 0.3 | 0.4 | 0.3 |
Then the variance of this distribution is
Find the mean and variance of the number randomly selected from 1 to 15
Two probability distributions of the discrete random variable X and Y are given below.
X | 0 | 1 | 2 | 3 |
P(X) | `1/5` | `2/5` | `1/5` | `1/5` |
Y | 0 | 1 | 2 | 3 |
P(Y) | `1/5` | `3/10` | `2/10` | `1/10` |
Prove that E(Y2) = 2E(X).
The probability distribution of a discrete random variable X is given below:
X | 2 | 3 | 4 | 5 |
P(X) | `5/"k"` | `7/"k"` | `9/"k"` | `11/"k"` |
The value of k is ______.
Find the mean number of defective items in a sample of two items drawn one-by-one without replacement from an urn containing 6 items, which include 2 defective items. Assume that the items are identical in shape and size.
Two balls are drawn at random one by one with replacement from an urn containing equal number of red balls and green balls. Find the probability distribution of number of red balls. Also, find the mean of the random variable.
A primary school teacher wants to teach the concept of 'larger number' to the students of Class II.
To teach this concept, he conducts an activity in his class. He asks the children to select two numbers from a set of numbers given as 2, 3, 4, 5 one after the other without replacement.
All the outcomes of this activity are tabulated in the form of ordered pairs given below:
2 | 3 | 4 | 5 | |
2 | (2, 2) | (2, 3) | (2, 4) | |
3 | (3, 2) | (3, 3) | (3, 5) | |
4 | (4, 2) | (4, 4) | (4, 5) | |
5 | (5, 3) | (5, 4) | (5, 5) |
- Complete the table given above.
- Find the total number of ordered pairs having one larger number.
- Let the random variable X denote the larger of two numbers in the ordered pair.
Now, complete the probability distribution table for X given below.
X 3 4 5 P(X = x) - Find the value of P(X < 5)
- Calculate the expected value of the probability distribution.
Five numbers x1, x2, x3, x4, x5 are randomly selected from the numbers 1, 2, 3, ......., 18 and are arranged in the increasing order such that x1 < x2 < x3 < x4 < x5. What is the probability that x2 = 7 and x4 = 11?
Kiran plays a game of throwing a fair die 3 times but to quit as and when she gets a six. Kiran gets +1 point for a six and –1 for any other number.
- If X denotes the random variable “points earned” then what are the possible values X can take?
- Find the probability distribution of this random variable X.
- Find the expected value of the points she gets.