Advertisements
Advertisements
प्रश्न
Amit and Rohit started a business by investing ₹20,000 each. After 3 months Amit withdrew ₹5,000 and Rohit put in ₹5,000 additionally. How should a profit of ₹12,800 be divided between them at the end of the year?
उत्तर
Amit invested ₹20,000 for 3 months and ₹15,000 for 9 months .
His investment = ₹(20,000 x 3 + 15,000 x 9)
Rohit invested ₹ 20,000 for 3 months and ₹25,000 for 9 months.
His investment = ₹ (20,000 x 3 + 25,000 x 9)
Now, ratio of their investment is (20,000 x 3 + 15,000 x 9) : (20,000 x 3 + 25,000 x 9)
i.e. 5000(4 + 3 x 3) x 3 : 5000(4 + 5 x 3) x 3
i.e. 13 : 19
∴ 13 + 19 = 32
Amit's share of profit = `13/32 xx 12,800`
= ₹ 5,200
Rohit's share of profit = `19/32 xx 12,800`
= ₹ 7,600
APPEARS IN
संबंधित प्रश्न
State the following are not the probability distributions of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P (X) | 0.4 | 0.4 | 0.2 |
State the following are not the probability distributions of a random variable. Give reasons for your answer.
Z | 3 | 2 | 1 | 0 | -1 |
P(Z) | 0.3 | 0.2 | 0.4 | 0.1 | 0.05 |
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as
(i) number greater than 4
(ii) six appears on at least one die
A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.
Two numbers are selected at random (without replacement) from the first six positive integers. Let X denotes the larger of the two numbers obtained. Find E(X).
Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in x number of colleges. It is given that
where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: c
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: P (X < 2)
Five defective bolts are accidently mixed with twenty good ones. If four bolts are drawn at random from this lot, find the probability distribution of the number of defective bolts.
Find the mean and standard deviation of each of the following probability distribution:
xi : | 1 | 3 | 4 | 5 |
pi: | 0.4 | 0.1 | 0.2 | 0.3 |
A discrete random variable X has the probability distribution given below:
X: | 0.5 | 1 | 1.5 | 2 |
P(X): | k | k2 | 2k2 | k |
Determine the mean of the distribution.
Two cards are drawn simultaneously from a pack of 52 cards. Compute the mean and standard deviation of the number of kings.
A fair die is tossed. Let X denote twice the number appearing. Find the probability distribution, mean and variance of X.
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses.
If the probability distribution of a random variable X is given by Write the value of k.
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | 2k | 4k | 3k | k |
Calculate `"e"_0^circ ,"e"_1^circ , "e"_2^circ` from the following:
Age x | 0 | 1 | 2 |
lx | 1000 | 880 | 876 |
Tx | - | - | 3323 |
Compute the age specific death rate for the following data :
Age group (years) | Population (in thousands) | Number of deaths |
Below 5 | 15 | 360 |
5-30 | 20 | 400 |
Above 30 | 10 | 280 |
The expenditure Ec of a person with income I is given by Ec = (0.000035) I2 + (0. 045) I. Find marginal propensity to consume (MPC) and average propensity to consume (APC) when I = 5000.
The following table gives the age of the husbands and of the wives :
Age of wives (in years) |
Age of husbands (in years) |
|||
20-30 | 30- 40 | 40- 50 | 50- 60 | |
15-25 | 5 | 9 | 3 | - |
25-35 | - | 10 | 25 | 2 |
35-45 | - | 1 | 12 | 2 |
45-55 | - | - | 4 | 16 |
55-65 | - | - | - | 4 |
Find the marginal frequency distribution of the age of husbands.
Find expected value and variance of X, where X is number obtained on uppermost face when a fair die is thrown.
The p.d.f. of r.v. of X is given by
f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .
Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).
Determine whether each of the following is a probability distribution. Give reasons for your answer.
z | 3 | 2 | 1 | 0 | -1 |
P(z) | 0.3 | 0.2 | 0.4. | 0.05 | 0.05 |
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 |
P(x) | 0.3 | 0.4 | 0.2 |
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of 2 successes
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X = 0
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X > 1
Find the probability of throwing at most 2 sixes in 6 throws of a single die.
Solve the following problem :
Following is the probability distribution of a r.v.X.
X | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is positive.
Solve the following problem:
Following is the probability distribution of a r.v.X.
X | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is odd.
Solve the following problem :
In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.
Calculate the probabilities of obtaining an answer yes from all of the selected students.
A random variable X has the following probability distribution
X | 2 | 3 | 4 |
P(x) | 0.3 | 0.4 | 0.3 |
Then the variance of this distribution is
Find the probability distribution of the number of doublets in three throws of a pair of dice
Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.
Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is ______.
A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.