Advertisements
Advertisements
प्रश्न
Five defective bolts are accidently mixed with twenty good ones. If four bolts are drawn at random from this lot, find the probability distribution of the number of defective bolts.
उत्तर
Let X denote the number of defective bolts in a sample of 4 bolts drawn from a bag containing 5 defective bolts and 20 good bolts. Then, X can take the values 0, 1, 2, 3 and 4.
Now,
\[P\left( X = 0 \right)\]
\[ = P\left( \text{ no defective bolts } \right)\]
\[ = \frac{{}^{20} C_4}{{}^{25} C_4}\]
\[ = \frac{4845}{12650}\]
\[ = \frac{969}{2530}\]
\[P\left( X = 1 \right)\]
\[ = P\left( 1 \text{ defective bolt } \right)\]
\[ = \frac{{}^5 C_1 \times^{20} C_3}{{}^{25} C_4}\]
\[ = \frac{5700}{12650}\]
\[ = \frac{114}{253}\]
\[P\left( X = 2 \right)\]
\[ = P\left( 2 \text{ defective bolts } \right)\]
\[ = \frac{{}^5 C_2 \times^{20} C_2}{{}^{25} C_4}\]
\[ = \frac{1900}{12650}\]
\[ = \frac{38}{253}\]
\[P\left( X = 3 \right)\]
\[ = P\left( 3 \text{ defective bolts }\right)\]
\[ = \frac{{}^5 C_3 \times^{20} C_1}{{}^{25} C_4}\]
\[ = \frac{200}{12650}\]
\[ = \frac{4}{253}\]
\[P\left( X = 4 \right)\]
\[ = P\left( 4 \text{ defective bolts } \right)\]
\[ = \frac{{}^5 C_4}{{}^{25} C_4}\]
\[ = \frac{5}{12650}\]
\[ = \frac{1}{2530}\]
Thus, the probability distribution of X is given by
X | P(X) |
0 |
\[\frac{969}{2530}\]
|
1 |
\[\frac{114}{253}\]
|
2 |
\[\frac{38}{253}\]
|
3 |
\[\frac{4}{253}\]
|
4 |
\[\frac{1}{2530}\]
|
APPEARS IN
संबंधित प्रश्न
State the following are not the probability distributions of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P (X) | 0.4 | 0.4 | 0.2 |
A random variable X has the following probability distribution:
Values of X : | −2 | −1 | 0 | 1 | 2 | 3 |
P (X) : | 0.1 | k | 0.2 | 2k | 0.3 | k |
Find the value of k.
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: P (X < 2)
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: P (1 < X ≤ 2)
Let X be a random variable which assumes values x1, x2, x3, x4 such that 2P (X = x1) = 3P(X = x2) = P (X = x3) = 5 P (X = x4). Find the probability distribution of X.
Two dice are thrown together and the number appearing on them noted. X denotes the sum of the two numbers. Assuming that all the 36 outcomes are equally likely, what is the probability distribution of X?
Two cards are drawn successively with replacement from well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
Two cards are drawn successively without replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs.
A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.
Three cards are drawn at random (without replacement) from a well shuffled pack of 52 cards. Find the probability distribution of number of red cards. Hence, find the mean of the distribution .
In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses.
If a random variable X has the following probability distribution:
X : | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
P (X) : | a | 3a | 5a | 7a | 9a | 11a | 13a | 15a | 17a |
then the value of a is
Mark the correct alternative in the following question:
For the following probability distribution:
X : | 1 | 2 | 3 | 4 |
P(X) : |
\[\frac{1}{10}\]
|
\[\frac{1}{5}\]
|
\[\frac{3}{10}\]
|
\[\frac{2}{5}\]
|
The value of E(X2) is
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes and, hence, find its mean.
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spades. Hence, find the mean of the distribtution.
Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.
Calculate `"e"_0^circ ,"e"_1^circ , "e"_2^circ` from the following:
Age x | 0 | 1 | 2 |
lx | 1000 | 880 | 876 |
Tx | - | - | 3323 |
If the demand function is D = 150 - p2 - 3p, find marginal revenue, average revenue and elasticity of demand for price p = 3.
The following data gives the marks of 20 students in mathematics (X) and statistics (Y) each out of 10, expressed as (x, y). construct ungrouped frequency distribution considering single number as a class :
(2, 7) (3, 8) (4, 9) (2, 8) (2, 8) (5, 6) (5 , 7) (4, 9) (3, 8) (4, 8) (2, 9) (3, 8) (4, 8) (5, 6) (4, 7) (4, 7) (4, 6 ) (5, 6) (5, 7 ) (4, 6 )
A departmental store gives trafnfng to the salesmen in service followed by a test. It is experienced that the performance regarding sales of any salesman is linearly related to the scores secured by him. The following data gives the test scores and sales made by nine (9) salesmen during a fixed period.
Test scores (X) | 16 | 22 | 28 | 24 | 29 | 25 | 16 | 23 | 24 |
Sales (Y) (₹ in hundreds) | 35 | 42 | 57 | 40 | 54 | 51 | 34 | 47 | 45 |
(a) Obtain the line of regression of Y on X.
(b) Estimate Y when X = 17.
The p.m.f. of a random variable X is
`"P"(x) = 1/5` , for x = I, 2, 3, 4, 5
= 0 , otherwise.
Find E(X).
The defects on a plywood sheet occur at random with an average of the defect per 50 sq. ft. What Is the probability that such sheet will have-
(a) No defects
(b) At least one defect
[Use e-1 = 0.3678]
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 |
P(x) | 0.1 | 0.6 | 0.3 |
A sample of 4 bulbs is drawn at random with replacement from a lot of 30 bulbs which includes 6 defective bulbs. Find the probability distribution of the number of defective bulbs.
Solve the following problem :
Following is the probability distribution of a r.v.X.
X | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is positive.
Solve the following problem :
Following is the probability distribution of a r.v.X.
x | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is non-negative
Solve the following problem :
It is observed that it rains on 10 days out of 30 days. Find the probability that it rains on at most 2 days of a week.
For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______
Find the mean and variance of the number randomly selected from 1 to 15
Let X be a discrete random variable. The probability distribution of X is given below:
X | 30 | 10 | – 10 |
P(X) | `1/5` | `3/10` | `1/2` |
Then E(X) is equal to ______.
A discrete random variable X has the probability distribution given as below:
X | 0.5 | 1 | 1.5 | 2 |
P(X) | k | k2 | 2k2 | k |
Determine the mean of the distribution.
Consider the probability distribution of a random variable X:
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.25 | 0.3 | 0.2 | 0.15 |
Variance of X.
The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p
The probability distribution of a discrete random variable X is given as under:
X | 1 | 2 | 4 | 2A | 3A | 5A |
P(X) | `1/2` | `1/5` | `3/25` | `1/10` | `1/25` | `1/25` |
Calculate: Variance of X
The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2, "for" x = 1"," 2"," 3),(2"k"x, "for" x = 4"," 5"," 6),(0, "otherwise"):}`
where k is a constant. Calculate P(X ≥ 4)
Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is ______.
The probability that a bomb will hit the target is 0.8. Complete the following activity to find, the probability that, out of 5 bombs exactly 2 will miss the target.
Solution: Here, n = 5, X =number of bombs that hit the target
p = probability that bomb will hit the target = `square`
∴ q = 1 - p = `square`
Here, `X∼B(5,4/5)`
∴ P(X = x) = `""^"n""C"_x"P"^x"q"^("n" - x) = square`
P[Exactly 2 bombs will miss the target] = P[Exactly 3 bombs will hit the target]
= P(X = 3)
=`""^5"C"_3(4/5)^3(1/5)^2=10(4/5)^3(1/5)^2`
∴ P(X = 3) = `square`
A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.
A primary school teacher wants to teach the concept of 'larger number' to the students of Class II.
To teach this concept, he conducts an activity in his class. He asks the children to select two numbers from a set of numbers given as 2, 3, 4, 5 one after the other without replacement.
All the outcomes of this activity are tabulated in the form of ordered pairs given below:
2 | 3 | 4 | 5 | |
2 | (2, 2) | (2, 3) | (2, 4) | |
3 | (3, 2) | (3, 3) | (3, 5) | |
4 | (4, 2) | (4, 4) | (4, 5) | |
5 | (5, 3) | (5, 4) | (5, 5) |
- Complete the table given above.
- Find the total number of ordered pairs having one larger number.
- Let the random variable X denote the larger of two numbers in the ordered pair.
Now, complete the probability distribution table for X given below.
X 3 4 5 P(X = x) - Find the value of P(X < 5)
- Calculate the expected value of the probability distribution.