Advertisements
Advertisements
प्रश्न
Calculate `"e"_0^circ ,"e"_1^circ , "e"_2^circ` from the following:
Age x | 0 | 1 | 2 |
lx | 1000 | 880 | 876 |
Tx | - | - | 3323 |
उत्तर
We know that `"e"_"x"^circ = "T"_"x"/"l"_"x"`
Age x | lx | Lx | Tx |
0 | 1000 | 940 | 5141 |
1 | 880 | 878 | 4201 |
2 | 876 | - | 33236 |
Lx = `("l"_"x" + "l"_("x" + 1))/2` , x = 0,1,2
L0 = `("l"_0 + "l"_1)/2 = (1000 + 880)/2 = 940`
L1 = `("l"_1 + "l"_2)/2 = (880 + 876)/2 = 878`
T2 = 3323 given
T1 = L1 + T2 = 878 + 3323 = 4201
T0 = L0 + T1 = 940 + 4201 = 5141
`"e"_0^circ = "T"_0/"l"_0 = 5141/1000 = 5.141`
`"e"_1^circ = "T"_1/"l"_1 = 4201/880 = 4.7739`
`"e"_2^circ = "T"_2/"l"_2 = 3323/876 = 3.7934`
APPEARS IN
संबंधित प्रश्न
An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X represents the number of black balls. What are the possible values of X? Is X a random variable?
Find the probability distribution of number of heads in four tosses of a coin.
Two numbers are selected at random (without replacement) from the first six positive integers. Let X denotes the larger of the two numbers obtained. Find E(X).
Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is
(A) `37/221`
(B) 5/13
(C) 1/13
(D) 2/13
Two numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and variance of X
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: P (X < 2)
A random variable X takes the values 0, 1, 2 and 3 such that:
P (X = 0) = P (X > 0) = P (X < 0); P (X = −3) = P (X = −2) = P (X = −1); P (X = 1) = P (X = 2) = P (X = 3) . Obtain the probability distribution of X.
Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.
A class has 15 students whose ages are 14, 17, 15, 14, 21, 19, 20, 16, 18, 17, 20, 17, 16, 19 and 20 years respectively. One student is selected in such a manner that each has the same chance of being selected and the age X of the selected student is recorded. What is the probability distribution of the random variable X?
Find the probability distribution of Y in two throws of two dice, where Y represents the number of times a total of 9 appears.
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, then find the probability distribution of X.
Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in x number of colleges. It is given that
where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.
Find the mean and standard deviation of each of the following probability distribution :
xi: | 0 | 1 | 3 | 5 |
pi : | 0.2 | 0.5 | 0.2 | 0.1 |
Find the mean variance and standard deviation of the following probability distribution
xi : | a | b |
pi : | p | q |
Three cards are drawn at random (without replacement) from a well shuffled pack of 52 cards. Find the probability distribution of number of red cards. Hence, find the mean of the distribution .
An urn contains 5 red and 2 black balls. Two balls are randomly drawn, without replacement. Let X represent the number of black balls drawn. What are the possible values of X ? Is X a random variable ? If yes, then find the mean and variance of X.
Write the values of 'a' for which the following distribution of probabilities becomes a probability distribution:
X= xi: | -2 | -1 | 0 | 1 |
P(X= xi) : |
\[\frac{1 - a}{4}\]
|
\[\frac{1 + 2a}{4}\]
|
\[\frac{1 - 2a}{4}\]
|
\[\frac{1 + a}{4}\]
|
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes and, hence, find its mean.
Three fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X.
Demand function x, for a certain commodity is given as x = 200 - 4p where p is the unit price. Find :
(a) elasticity of demand as function of p.
(b) elasticity of demand when p = 10 , interpret your result.
Compute the age specific death rate for the following data :
Age group (years) | Population (in thousands) | Number of deaths |
Below 5 | 15 | 360 |
5-30 | 20 | 400 |
Above 30 | 10 | 280 |
A fair coin is tossed 12 times. Find the probability of getting at least 2 heads .
The following table gives the age of the husbands and of the wives :
Age of wives (in years) |
Age of husbands (in years) |
|||
20-30 | 30- 40 | 40- 50 | 50- 60 | |
15-25 | 5 | 9 | 3 | - |
25-35 | - | 10 | 25 | 2 |
35-45 | - | 1 | 12 | 2 |
45-55 | - | - | 4 | 16 |
55-65 | - | - | - | 4 |
Find the marginal frequency distribution of the age of husbands.
Verify whether the following function can be regarded as probability mass function (p.m.f.) for the given values of X :
X | -1 | 0 | 1 |
P(X = x) | -0.2 | 1 | 0.2 |
Determine whether each of the following is a probability distribution. Give reasons for your answer.
z | 3 | 2 | 1 | 0 | -1 |
P(z) | 0.3 | 0.2 | 0.4. | 0.05 | 0.05 |
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at least 3 successes
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X = 0
Solve the following problem :
A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Find the probability that the inspector finds at most one defective item in the 4 selected items.
Solve the following problem :
A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 1 terminal requires attention during a week.
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as six appears on at least one die
A discrete random variable X has the probability distribution given as below:
X | 0.5 | 1 | 1.5 | 2 |
P(X) | k | k2 | 2k2 | k |
Find the value of k
The probability distribution of a discrete random variable X is given as under:
X | 1 | 2 | 4 | 2A | 3A | 5A |
P(X) | `1/2` | `1/5` | `3/25` | `1/10` | `1/25` | `1/25` |
Calculate: Variance of X
For the following probability distribution:
X | 1 | 2 | 3 | 4 |
P(X) | `1/10` | `3/10` | `3/10` | `2/5` |
E(X2) is equal to ______.
A bag contains 1 red and 3 white balls. Find the probability distribution of the number of red balls if 2 balls are drawn at random from the bag one-by-one without replacement.
Find the probability distribution of the number of successes in two toves of a die where a success is define as:- Six appeared on at least one die.
A random variable x has to following probability distribution.
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Determine
A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.