Advertisements
Advertisements
प्रश्न
Two numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and variance of X
उत्तर
First five positive integers are 1, 2, 3, 4 and 5
Two numbers from these can be selected in 5 × 4 = 20 ways
Let X denote the larger of the two numbers, so X can take values 2, 3, 4, 5
For X=2, the possible observations are (1,2) and (2,1)
`P(X = 2) = 2/20`
For X=3, the possible observations are (1,3),(3,1),(2,3) and (3,2)
`P(X = 3) = 4/20`
For X=4, the possible observations are (1,4),(4,1),(2,4),(4,2),(3,4) and (4,3)
`P(X = 4) = 6/20`
For X=5, the possible observations are (1,5),(5,1),(2,5),(5,2),(3,5),(5,3),(4,5) and (5,4)
`P(X = 5) = 8/20`
Therefore, the required probability distribution is as follows :
X = | 2 | 3 | 4 | 5 |
P(X) = | 2/20 | 4/20 | 6/20 | 8/20 |
Then Mean = `sumX_i P(X_i)`
`= 2xx2/20 + 3xx 4/20 + 4xx 6/20 + 5 xx8/20`
= 4
So the mean is 4
Now variance is `Var(X) = E(X^2) - {E(X)}^2`
`E(X^2) = 2^2 xx 2/20 + 3^3 xx 4/20 + 4^2 xx 6/20 + 5^2 xx 8/20`
`= 340/20 = 17`
Var(X) = `17 - (4)^2`
= 17 - 16
= 1
Hence, the variance is 1 and the mean is 4.
APPEARS IN
संबंधित प्रश्न
From a lot of 15 bulbs which include 5 defectives, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence find the mean of the distribution.
Probability distribution of X is given by
X = x | 1 | 2 | 3 | 4 |
P(X = x) | 0.1 | 0.3 | 0.4 | 0.2 |
Find P(X ≥ 2) and obtain cumulative distribution function of X
Find the probability distribution of number of tails in the simultaneous tosses of three coins.
Find the probability distribution of number of heads in four tosses of a coin.
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
Five defective bolts are accidently mixed with twenty good ones. If four bolts are drawn at random from this lot, find the probability distribution of the number of defective bolts.
Find the probability distribution of Y in two throws of two dice, where Y represents the number of times a total of 9 appears.
Find the mean and standard deviation of each of the following probability distributions:
xi : | 2 | 3 | 4 |
pi : | 0.2 | 0.5 | 0.3 |
Find the mean and standard deviation of each of the following probability distribution :
xi : | 1 | 2 | 3 | 4 |
pi : | 0.4 | 0.3 | 0.2 | 0.1 |
Two cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2, and 3. Let X denote the sum and Y the maximum of the two numbers drawn. Find the probability distribution, mean and variance of X and Y.
Find the mean of the following probability distribution:
X= xi: | 1 | 2 | 3 |
P(X= xi) : |
\[\frac{1}{4}\]
|
\[\frac{1}{8}\]
|
\[\frac{5}{8}\]
|
A random variable has the following probability distribution:
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | k | 2k | 3k | 4k |
Write the value of P (X ≥ 3).
Alex spends 20% of his income on food items and 12% on conveyance. If for the month of June 2010, he spent ₹900 on conveyance, find his expenditure on food items during the same month.
Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured.
A random variable X has the following probability distribution :
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
P(X) | C | 2C | 2C | 3C | C2 | 2C2 | 7C2+C |
Find the value of C and also calculate the mean of this distribution.
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 |
P(x) | 0.4 | 0.4 | 0.2 |
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.
A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of two successes
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X > 1
Solve the following problem :
The probability that a bomb will hit the target is 0.8. Find the probability that, out of 5 bombs, exactly 2 will miss the target.
Solve the following problem :
The probability that a lamp in the classroom will burn is 0.3. 3 lamps are fitted in the classroom. The classroom is unusable if the number of lamps burning in it is less than 2. Find the probability that the classroom cannot be used on a random occasion.
Solve the following problem :
A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 0
Solve the following problem :
It is observed that it rains on 10 days out of 30 days. Find the probability that it rains on at most 2 days of a week.
Find the probability distribution of the number of doublets in three throws of a pair of dice
Let X be a discrete random variable. The probability distribution of X is given below:
X | 30 | 10 | – 10 |
P(X) | `1/5` | `3/10` | `1/2` |
Then E(X) is equal to ______.
Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1), "for" x = 1"," 2"," 3"," 4),(2"k"x, "for" x = 5"," 6"," 7),(0, "Otherwise"):}`
where k is a constant. Calculate the value of k
Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1), "for" x = 1"," 2"," 3"," 4),(2"k"x, "for" x = 5"," 6"," 7),(0, "Otherwise"):}`
where k is a constant. Calculate Standard deviation of X.
The probability distribution of a discrete random variable X is given as under:
X | 1 | 2 | 4 | 2A | 3A | 5A |
P(X) | `1/2` | `1/5` | `3/25` | `1/10` | `1/25` | `1/25` |
Calculate: The value of A if E(X) = 2.94
Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is ______.
A random variable X has the following probability distribution:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Find:
- k
- P(X < 3)
- P(X > 4)