मराठी

Using Properties of Determinants, Prove that `|(1,1,1+3x),(1+3y, 1,1),(1,1+3z,1)| = 9(3xyz + Xy + Yz+ Zx)` - Mathematics

Advertisements
Advertisements

प्रश्न

Using properties of determinants, prove that `|(1,1,1+3x),(1+3y, 1,1),(1,1+3z,1)| = 9(3xyz + xy +  yz+ zx)`

उत्तर

Let `triangle = |(1,1,(1+3z)),(1+3y, 1,1),(1,1+3z,1)| = 9(3xyz + xy + yz + zx)`

Applying R2→R2 − R1, R3→R3 − R1

`=>triangle = |(1,1,1+3x),(3y,0,-3x),(0,3z,-3x)|`

Expanding along R1 ,we get

`triangle = 1(0 + 9xz) - 1(-9xy - 0) + (1+3x)(9yz  -0)`

`= 9xz + 9xy + 9yz + 27xyz`

`= 9(3xyz +xy +yz+zx)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2017-2018 (March) Delhi Set 1

संबंधित प्रश्‍न

By using properties of determinants, show that:

`|(y+k,y, y),(y, y+k, y),(y, y, y+k)| = k^2(3y + k)`


Evaluate `|(1,x,y),(1,x+y,y),(1,x,x+y)|`


Using properties of determinants, prove that:

`|(alpha, alpha^2,beta+gamma),(beta, beta^2, gamma+alpha),(gamma, gamma^2, alpha+beta)|` =  (β – γ) (γ – α) (α – β) (α + β + γ)


Using properties of determinants, prove that `|(x,x+y,x+2y),(x+2y, x,x+y),(x+y, x+2y, x)| = 9y^2(x + y)`


Without expanding determinants, show that

`|(1, 3, 6),(6, 1, 4),(3, 7, 12)| + |(2, 3, 3),(2, 1, 2),(1, 7, 6)| = 10|(1, 2, 1),(3, 1, 7),(3, 2, 6)|`


Without expanding evaluate the following determinant:

`|(1, "a", "b" + "c"),(1, "b", "c" + "a"),(1, "c", "a" + "b")|`


Prove that `|(x + y, y + z, z + x),(z + x, x + y, y + z),(y + z, z + x, x + y)| = 2|(x, y, z),(z, x, y),(y, z, x)|`


Using properties of determinant show that

`|(1, log_x y, log_x z),(log_y x, 1, log_y z),(log_z x, log_z y, 1)|` = 0


If `|("x"^"k", "x"^("k" + 2), "x"^("k" + 3)),("y"^"k", "y"^("k" + 2), "y"^("k" + 3)),("z"^"k", "z"^("k" + 2), "z"^("k" + 3))|` = (x - y) (y - z) (z - x)`(1/"x"+ 1/"y" + 1/"z") ` then


Select the correct option from the given alternatives:

The value of a for which system of equation a3x + (a + 1)3 y + (a + 2)3z = 0 ax + (a +1)y + (a + 2)z = 0 and x + y + z = 0 has non zero Soln. is


Answer the following question:

Evaluate `|(2, 3, 5),(400, 600, 1000),(48, 47, 18)|` by using properties


Prove that: `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz


Find the value of θ satisfying `[(1, 1, sin3theta),(-4, 3, cos2theta),(7, -7, -2)]` = 0


The value of determinant `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` is ______.


If x = – 9 is a root of `|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0, then other two roots are ______.


`|(x + 1, x + 2, x + "a"),(x + 2, x + 3, x + "b"),(x + 3, x + 4, x + "c")|` = 0, where a, b, c are in A.P.


The determinant `abs (("a","bc","a"("b + c")),("b","ac","b"("c + a")),("c","ab","c"("a + b"))) =` ____________


If the ratio of the H.M. and GM. between two numbers a and bis 4 : 5, then a: b is


`f : {1, 2, 3) -> {4, 5}` is not a function, if it is defined by which of the following?


The A.M., H.M. and G.M. between two numbers are `144/15`, 15 and 12, but not necessarily in this order then, H.M., G.M. and A.M. respectively are


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


Without expanding determinants, find the value of  `|(10, 57, 107), (12, 64, 124), (15, 78, 153)|`


Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`


By using properties of determinants, prove that 

`|(x+y, y+z, z+x),(z, x, y),(1, 1, 1)|` = 0 


Without expanding determinant find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`


Without expanding evaluate the following determinant.

`|(1, a, b + c),(1, b, c + a),(1, c, a + b)|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×