Advertisements
Advertisements
प्रश्न
Using properties of determinants, prove that:
`|(alpha, alpha^2,beta+gamma),(beta, beta^2, gamma+alpha),(gamma, gamma^2, alpha+beta)|` = (β – γ) (γ – α) (α – β) (α + β + γ)
उत्तर
APPEARS IN
संबंधित प्रश्न
Using properties of determinants prove the following: `|[1,x,x^2],[x^2,1,x],[x,x^2,1]|=(1-x^3)^2`
If ` f(x)=|[a,-1,0],[ax,a,-1],[ax^2,ax,a]| ` , using properties of determinants find the value of f(2x) − f(x).
Using properties of determinants, prove that
`|[x+y,x,x],[5x+4y,4x,2x],[10x+8y,8x,3x]|=x^3`
Using the property of determinants and without expanding, prove that:
`|(a-b,b-c,c-a),(b-c,c-a,a-b),(a-a,a-b,b-c)| = 0`
Using the property of determinants and without expanding, prove that:
`|(1, bc, a(b+c)),(1, ca, b(c+a)),(1, ab, c(a+b))| = 0`
By using properties of determinants, show that:
`|(-a^2, ab, ac),(ba, -b^2, bc),(ca,cb, -c^2)| = 4a^2b^2c^2`
By using properties of determinants, show that:
`|(a-b-c, 2a,2a),(2b, b-c-a,2b),(2c,2c, c-a-b)| = (a + b + c)^2`
Using properties of determinants, prove that:
`|(x, x^2, 1+px^3),(y, y^2, 1+py^3),(z, z^2, 1+pz^2)|` = (1 + pxyz) (x – y) (y – z) (z – x), where p is any scalar.
Using properties of determinants, prove the following:
Using properties of determinants, prove that:
`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`
Solve for x : `|("a"+"x","a"-"x","a"-"x"),("a"-"x","a"+"x","a"-"x"),("a"-"x","a"-"x","a"+"x")| = 0`, using properties of determinants.
Evaluate the following determinants:
`|(x - 1, x, x - 2),(0, x - 2, x - 3),(0, 0, x - 3)| = 0`
Using properties of determinants, show that `|("a" + "b", "a", "b"),("a", "a" + "c", "c"),("b", "c", "b" + "c")|` = 4abc.
Find the value (s) of x, if `|(1, 2x, 4x),(1, 4, 16),(1, 1, 1)|` = 0
By using properties of determinants, prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0.
Without expanding evaluate the following determinant:
`|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`
Select the correct option from the given alternatives:
The value of a for which system of equation a3x + (a + 1)3 y + (a + 2)3z = 0 ax + (a +1)y + (a + 2)z = 0 and x + y + z = 0 has non zero Soln. is
Select the correct option from the given alternatives:
`|("b" + "c", "c" + "a", "a" + "b"),("q" + "r", "r" + "p", "p" + "q"),(y + z, z + x, x + y)|` =
Select the correct option from the given alternatives:
If `|(6"i", -3"i", 1),(4, 3"i", -1),(20, 3, "i")|` = x + iy then
Answer the following question:
Evaluate `|(101, 102, 103),(106, 107, 108),(1, 2, 3)|` by using properties
Answer the following question:
If `|("a", 1, 1),(1, "b", 1),(1, 1, "c")|` = 0 then show that `1/(1 - "a") + 1/(1 - "b") + 1/(1 - "c")` = 1
The value of `|(1, 1, 1),(""^"n""C"_1, ""^("n" + 2)"C"_1, ""^("n" + 4)"C"_1),(""^"n""C"_2, ""^("n" + 2)"C"_2, ""^("n" + 4)"C"_2)|` is 8.
Evaluate: `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`
Find the value of θ satisfying `[(1, 1, sin3theta),(-4, 3, cos2theta),(7, -7, -2)]` = 0
If `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, then find values of x.
If x, y, z ∈ R, then the value of determinant `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` is equal to ______.
If the value of a third order determinant is 12, then the value of the determinant formed by replacing each element by its co-factor will be 144.
If a, b, c are the roots of the equation x3 - 3x2 + 3x + 7 = 0, then the value of `abs((2 "bc - a"^2, "c"^2, "b"^2),("c"^2, 2 "ac - b"^2, "a"^2),("b"^2, "a"^2, 2 "ab - c"^2))` is ____________.
A number consists of two digits and the digit in the ten's place exceeds that in the unit's place by 5. If 5 times the sum of the digits be subtracted from the number, the digits of the number are reversed. Then the sum of digits of the number is:
The value of the determinant `|(1, cos(β - α), cos(γ - α)),(cos(α - β), 1, cos(γ - β)),(cos(α - γ), cos(β - γ), 1)|` is equal to ______.
If A, B and C are the angles of a triangle ABC, then `|(sin2"A", sin"C", sin"B"),(sin"C", sin2"B", sin"A"),(sin"B", sin"A", sin2"C")|` = ______.
In a triangle the length of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be ______.
If `|(α, 3, 4),(1, 2, 1),(1, 4, 1)|` = 0, then the value of α is ______.
Without expanding determinants find the value of `|(10,57,107), (12, 64, 124), (15, 78, 153)|`
Without expanding evaluate the following determinant.
`|(1, a, a + c),(1, b, c + a),(1, c, a + b)|`
Without expanding determinants find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
Without expanding evaluate the following determinant:
`|(1, a, b + c), (1, b, c + a), (1, c, a + b)|`
Without expanding the determinant, find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
Without expanding evaluate the following determinant.
`|(1, a, b+c),(1, b, c+a),(1, c, a+b)|`
Without expanding evaluate the following determinant.
`|(1, a, b + c),(1, b, c + a),(1, c, a + b)|`