Advertisements
Advertisements
प्रश्न
Using properties of determinants, prove the following:
उत्तर
Let \[\bigtriangleup = \begin{vmatrix}x^2 + 1 & xy & xz \\ xy & y^2 + 1 & yz \\ xz & yz & z^2 + 1\end{vmatrix}\]
Multiplying R1, R2 and R3 by x, y and z, respectively, we get:
\[\bigtriangleup = \frac{1}{xyz}\begin{vmatrix}x\left( x^2 + 1 \right) & x^2 y & x^2 z \\ x y^2 & y\left( y^2 + 1 \right) & y^2 z \\ x z^2 & y z^2 & z\left( z^2 + 1 \right)\end{vmatrix}\]
Taking x, y and z common from the columns C1, C2 and C3, respectively, we get:
\[\bigtriangleup = \frac{xyz}{xyz}\begin{vmatrix}\left( x^2 + 1 \right) & x^2 & x^2 \\ y^2 & \left( y^2 + 1 \right) & y^2 \\ z^2 & z^2 & \left( z^2 + 1 \right)\end{vmatrix}\]
Applying R1 \[\to\] + R2 + R3, we get:
\[\bigtriangleup = \begin{vmatrix}\left( 1 + x^2 + y^2 + z^2 \right) & \left( 1 + x^2 + y^2 + z^2 \right) & \left( 1 + x^2 + y^2 + z^2 \right) \\ y^2 & \left( y^2 + 1 \right) & y^2 \\ z^2 & z^2 & \left( z^2 + 1 \right)\end{vmatrix}\]
\[\Rightarrow \bigtriangleup = \left( 1 + x^2 + y^2 + z^2 \right)\begin{vmatrix}1 & 1 & 1 \\ y^2 & \left( y^2 + 1 \right) & y^2 \\ z^2 & z^2 & \left( z^2 + 1 \right)\end{vmatrix}\]
Applying
\[C_2 \to C_2 - C_1\text { and } C_3 \to C_3 - C_1\] we get:
\[\bigtriangleup = \left( 1 + x^2 + y^2 + z^2 \right)\begin{vmatrix}1 & 0 & 0 \\ y^2 & 1 & 0 \\ z^2 & 0 & 1\end{vmatrix} = \left( 1 + x^2 + y^2 + z^2 \right) \times 1 = \left( 1 + x^2 + y^2 + z^2 \right)\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Using the property of determinants and without expanding, prove that:
`|(1, bc, a(b+c)),(1, ca, b(c+a)),(1, ab, c(a+b))| = 0`
By using properties of determinants, show that:
`|(0,a, -b),(-a,0, -c),(b, c,0)| = 0`
By using properties of determinants, show that:
`|(x,x^2,yz),(y,y^2,zx),(z,z^2,xy)| = (x-y)(y-z)(z-x)(xy+yz+zx)`
By using properties of determinants, show that:
`|(x+y+2z, x, y),(z, y+z+2z,y),(z,x,z+x+2y)| = 2(x+y+z)^3`
Without expanding the determinant, prove that
`|(a, a^2,bc),(b,b^2, ca),(c, c^2,ab)| = |(1, a^2, a^3),(1, b^2, b^3),(1, c^2, c^3)|`
Evaluate `|(1,x,y),(1,x+y,y),(1,x,x+y)|`
Prove the following using properties of determinants :
\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2\left( a + b + c \right) {}^3\]
Using properties of determinants, prove that:
`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`
Using properties of determinants, prove that:
`|[a^2 + 1, ab, ac], [ba, b^2 + 1, bc ], [ca, cb, c^2+1]| = a^2 + b^2 + c^2 + 1`
Using properties of determinants, show that `|("a" + "b", "a", "b"),("a", "a" + "c", "c"),("b", "c", "b" + "c")|` = 4abc.
If `|(4 + x, 4 - x, 4 - x),(4 - x, 4 + x, 4 - x),(4 - x, 4 - x, 4 + x)|` = 0, then find the values of x.
Select the correct option from the given alternatives:
The system 3x – y + 4z = 3, x + 2y – 3z = –2 and 6x + 5y + λz = –3 has at least one Solution when
Answer the following question:
By using properties of determinant prove that `|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0
Answer the following question:
If `|("a", 1, 1),(1, "b", 1),(1, 1, "c")|` = 0 then show that `1/(1 - "a") + 1/(1 - "b") + 1/(1 - "c")` = 1
Evaluate: `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`
Evaluate: `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`
Prove that: `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz
If `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, then find values of x.
If `abs ((2"x",5),(8, "x")) = abs ((6,-2),(7,3)),` then the value of x is ____________.
Let 'A' be a square matrix of order 3 × 3, then |KA| is equal to:
The value of the determinant `|(6, 0, -1),(2, 1, 4),(1, 1, 3)|` is ______.
Without expanding determinants find the value of `|(10,57,107), (12, 64, 124), (15, 78, 153)|`
By using properties of determinant prove that `|(x+y,y+z,z+x),(z,x,y),(1,1,1)|` = 0
Without expanding evaluate the following determinant:
`|(1, a, b + c), (1, b, c + a), (1, c, a + b)|`
Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
Without expanding determinant find the value of `|(10,57,107),(12,64,124),(15,78,153)|`
Without expanding determinants, find the value of `|(10, 57, 107),(12, 64, 124),(15, 78, 153)|`