Advertisements
Advertisements
प्रश्न
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
उत्तर
\[\text { Let, u }= \tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\]
\[\text { put x }= \tan\theta\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{\sqrt{1 + \tan^2 \theta} - 1}{\tan\theta} \right)\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{sec\theta - 1}{\tan\theta} \right) \]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{1 - \cos\theta}{\sin\theta} \right) \]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{2 \sin^2 \frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} \right) \]
\[ \Rightarrow u = \tan^{- 1} \left( \tan\frac{\theta}{2} \right) . . . \left( i \right)\]
\[\text { And,} \]
\[ v = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\]
\[ \Rightarrow v = \sin^{- 1} \left( \frac{2\tan\theta}{1 + \tan^2 \theta} \right) \]
\[ \Rightarrow v = \sin^{- 1} \left( \sin2\theta \right) . . . \left( ii \right)\]
\[\text { Here }, \]
\[ - 1 < x < 1\]
\[ \Rightarrow - 1 < \tan\theta < 1 \]
\[ \Rightarrow - \frac{\pi}{4} < \theta < \frac{\pi}{4} . . . \left( A \right) \]
\[\text { So, from equation } \left( i \right), \]
\[u = \frac{\theta}{2} .........\left[ \text { Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right] \]
\[ \Rightarrow u = \frac{1}{2} \tan^{- 1} x ..........\left[ \text { since, } x = \tan\theta \right]\]
Differentiating it with respect to x,
\[\frac{du}{dx} = \frac{1}{2}\left( \frac{1}{1 + x^2} \right)\]
\[ \Rightarrow \frac{du}{dx} = \frac{1}{2\left( 1 + x^2 \right)} . . . \left( i \right)\]
\[\text { Now, from equation } \left( ii \right) \text { and } \left( A \right), \]
\[v = 2\theta .........\left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ \Rightarrow v = 2 \tan^{- 1} x .........\left[ \text { Since, } x = \tan\theta \right]\]
Differentiating it with respect to x,
\[\frac{dv}{dx} = 2\left( \frac{1}{1 + x^2} \right) . . . \left( iv \right)\]
\[\text { dividing equation } \left( iii \right) \text { by } \left( iv \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{1}{2\left( 1 + x^2 \right)} \times \frac{1 + x^2}{2}\]
\[ \therefore \frac{du}{dv} = \frac{1}{4}\]
संबंधित प्रश्न
Differentiate logx 3 ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
Find the second order derivatives of the following function x3 log x ?
Find the second order derivatives of the following function x cos x ?
Find the second order derivatives of the following function log (log x) ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
Differentiate `log [x+2+sqrt(x^2+4x+1)]`