मराठी

Differentiate Sin − 1 ( 2 X √ 1 − X 2 ) with Respect to Sec − 1 ( 1 √ 1 − X 2 ) X ∈ ( 0 , 1 √ 2 ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?

बेरीज

उत्तर

\[\text {  Let, u } = \sin^{- 1} \left( 2x\sqrt{1 - x^2} \right)\]

\[ \text { Put x } = \sin\theta\]

\[ \Rightarrow u = \sin^{- 1} \left( 2\sin\theta\sqrt{1 - \sin^2 \theta} \right)\]

\[ \Rightarrow u = \sin^{- 1} \left( 2 \sin\theta \cos\theta \right) \]

\[ \Rightarrow u = \sin^{- 1} \left( \sin2\theta \right) . . . \left( i \right)\]

\[\text { And,} \]

\[ \text { Let v } = se c^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\]

\[ \Rightarrow v = se c^{- 1} \left( \frac{1}{\sqrt{1 - \sin^2 \theta}} \right) \]

\[ \Rightarrow v = se c^{- 1} \left( \frac{1}{\cos\theta} \right) \]

\[ \Rightarrow v = se c^{- 1} \left( sec\theta \right) \]

\[ \Rightarrow v = \cos^{- 1} \left( \frac{1}{\frac{1}{\cos\theta}} \right) ........\left[ \text { Since }, se c^{- 1} x = \cos^{- 1} \left( \frac{1}{x} \right) \right]\]

\[ \Rightarrow v = \cos^{- 1} \left( \cos\theta \right) . ... . \left( ii \right)\]

\[\text { Here }, \]

\[ x \in \left( 0, \frac{1}{\sqrt{2}} \right)\]

\[ \Rightarrow \sin\theta \in \left( 0, \frac{1}{\sqrt{2}} \right)\]

\[ \Rightarrow \theta \in \left( 0, \frac{\pi}{4} \right)\]

\[\text { So, from equation } \left( i \right), \]

\[ u = 2\theta \left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right] \]

\[\text { Let, u } = 2 \sin^{- 1} x .......\left[ \text { Since,} x = \sin\theta \right]\]

Differentiating it with respect to x,

\[\frac{dv}{dx} = \frac{1}{\sqrt{1 - x^2}} . . ... \left( iv \right)\]

\[\text { dividing equation } \left( iii \right) by \left( iv \right), \]

\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2}{\sqrt{1 - x^2}} \times \frac{\sqrt{1 - x^2}}{1}\]

\[ \therefore \frac{du}{dv} = 2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.08 [पृष्ठ ११२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.08 | Q 7.1 | पृष्ठ ११२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`


Differentiate the following functions from first principles e−x.


Differentiate the following functions from first principles e3x.


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate \[e^{\sin^{- 1} 2x}\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?


Find  \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?

 


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?


Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


Find \[\frac{dy}{dx}\] \[y =  \left( \tan  x \right)^{\cot   x}  +  \left( \cot  x \right)^{\tan  x}\] ?


Find \[\frac{dy}{dx}\]  \[y = x^x + \left( \sin x \right)^x\] ?


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


If \[x = \cos t \text{ and y }  = \sin t,\] prove that  \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?

 


Differentiate (log x)x with respect to log x ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?


If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?


If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?


If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?


Find the second order derivatives of the following function  x3 + tan x ?


If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


If y = etan x, then (cos2 x)y2 =


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


Find the minimum value of (ax + by), where xy = c2.


f(x) = 3x2 + 6x + 8, x ∈ R


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×