Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
उत्तर
Taking log on both sides
\[\log y = \log\left( \sin x \sin2x \sin3x \sin4x \right)\]
\[ \Rightarrow \log y = \log\sin x + \log\sin2x + \log\sin3x + \log\sin4x\]
Differentiating with respect to x using chain rule,
\[\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\left( \log\sin x \right) + \frac{d}{dx}\left( \log\sin2x \right) + \frac{d}{dx}\left( \log\sin3x \right) + \frac{d}{dx}\left( \log\sin4x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{1}{\sin x}\frac{d}{dx}\left( \sin x \right) + \frac{1}{\sin2x}\frac{d}{dx}\left( \sin2x \right) + \frac{1}{\sin3x}\frac{d}{dx}\left( \sin3x \right) + \frac{1}{\sin4x}\frac{d}{dx}\left( \sin4x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{1}{\sin x}\left( \cos x \right) + \frac{1}{\sin2x}\left( \cos2x \right)\frac{d}{dx}\left( 2x \right) + \frac{1}{\sin3x}\left( \cos3x \right)\frac{d}{dx}\left( 3x \right) + \frac{1}{\sin4x}\left( \cos4x \right)\frac{d}{dx}\left( 4x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \left[ \cot x + \cot2x\left( 2 \right) + \cot3x\left( 3 \right) + \cot4x\left( 4 \right) \right]\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \cot x + 2\cot2x + 3\cot3x + 4\cot4x \right]\]
\[ \Rightarrow \frac{dy}{dx} = \left( \sin x \sin2x \sin3x \sin4x \right)\left[ \cot x + 2\cot2x + 3\cot3x + 4\cot4x \right] \left[ \text{Using equation } \left( i \right) \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
Find the second order derivatives of the following function sin (log x) ?
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\]
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]