Advertisements
Advertisements
प्रश्न
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
उत्तर
\[\text{ We have,} x^{13} y^7 = \left( x + y \right)^{20} \]
Taking log on both sides,
\[\log\left( x^{13} y^7 \right) = \log \left( x + y \right)^{20} \]
\[ \Rightarrow 13\log x + 7\log y = 20\log\left( x + y \right)\]
Differentiating with respect to x using chain rule,
\[13\frac{d}{dx}\left( \log x \right) + 7\frac{d}{dx}\left( \log y \right) = 20\frac{d}{dx}\log\left( x + y \right)\]
\[ \Rightarrow \frac{13}{x} + \frac{7}{y}\frac{dy}{dx} = \frac{20}{x + y}\frac{d}{dx}\left( x + y \right)\]
\[ \Rightarrow \frac{13}{x} + \frac{7}{y}\frac{dy}{dx} = \frac{20}{x + y}\left[ 1 + \frac{dy}{dx} \right]\]
\[ \Rightarrow \frac{7}{y}\frac{dy}{dx} - \frac{20}{x + y}\frac{dy}{dx} = \frac{20}{x + y} - \frac{13}{x}\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{7}{y} - \frac{20}{x + y} \right] = \frac{20}{x + y} - \frac{13}{x}\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{7\left( x + y \right) - 20y}{y\left( x + y \right)} \right] = \left[ \frac{20x - 13\left( x + y \right)}{x\left( x + y \right)} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \left[ \frac{20x - 13x - 13y}{x\left( x + y \right)} \right]\left[ \frac{y\left( x + y \right)}{7x + 7y - 20y} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x}\left( \frac{7x - 13y}{7x - 13y} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
f(x) = 3x2 + 6x + 8, x ∈ R