Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
उत्तर
\[\text{ We have, } \sin x y + \cos\left( x + y \right) = 1\]
Differentiating with respect to x, we get,
\[\frac{d}{dx}\left( \sin xy \right) + \frac{d}{dx}\cos\left( x + y \right) = \frac{d}{dx}\left( 1 \right)\]
\[ \Rightarrow \cos xy\frac{d}{dx}\left( xy \right) - \sin\left( x + y \right)\frac{d}{dx}\left( x + y \right) = 0 \]
\[ \Rightarrow \cos xy\left[ x\frac{d y}{d x} + y\frac{d}{dx}\left( x \right) \right] - \sin\left( x + y \right)\left[ 1 + \frac{d y}{d x} \right] = 0\]
\[ \Rightarrow \cos xy\left[ x\frac{d y}{d x} + y\left( 1 \right) \right] - \sin\left( x + y \right) - \sin\left( x + y \right)\frac{d y}{d x} = 0\]
\[ \Rightarrow x\cos xy\frac{d y}{d x} + y\cos xy - \sin\left( x + y \right) - \sin\left( x + y \right)\frac{d y}{d x} = 0\]
\[ \Rightarrow \left[ x\cos xy - \sin\left( x + y \right) \right]\frac{d y}{d x} = \left[ \sin\left( x + y \right) - y\cos xy \right]\]
\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{\sin\left( x + y \right) - y \cos xy}{x\cos xy - \sin\left( x + y \right)} \right]\]
APPEARS IN
संबंधित प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles log cos x ?
Differentiate the following functions from first principles x2ex ?
Differentiate logx 3 ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
Differentiate \[e^x \log \sin 2x\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
Differentiate \[\left( \log x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
Differential coefficient of sec(tan−1 x) is ______.
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function tan−1 x ?
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If y = etan x, then (cos2 x)y2 =
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`