Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
उत्तर
\[\text{ We have, } \left( x + y \right)^2 = 2axy\]
Differentiating with respect to x, we get,
\[\Rightarrow \frac{d}{dx} \left( x + y \right)^2 = \frac{d}{dx}\left( 2axy \right)\]
\[ \Rightarrow 2\left( x + y \right)\frac{d}{dx}\left( x + y \right) = 2a\left[ x\frac{d y}{d x} + y\frac{d}{dx}\left( x \right) \right] \]
\[ \Rightarrow 2\left( x + y \right)\left[ 1 + \frac{d y}{d x} \right] = 2a\left[ x\frac{d y}{d x} + y\left( 1 \right) \right]\]
\[ \Rightarrow 2\left( x + y \right) + 2\left( x + y \right)\frac{d y}{d x} = 2ax\frac{d y}{d x} + 2ay\]
\[ \Rightarrow \frac{d y}{d x}\left[ 2\left( x + y \right) - 2ax \right] = 2ay - 2\left( x + y \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{2\left[ ay - x - y \right]}{2\left[ x + y - ax \right]}\]
\[ \Rightarrow \frac{d y}{d x} = \left( \frac{ay - x - y}{x + y - ax} \right)\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate tan (x° + 45°) ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
f(x) = 3x2 + 6x + 8, x ∈ R
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.