Advertisements
Advertisements
प्रश्न
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
उत्तर
\[\text{ Let } y = \frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\]
Differentiate with respect to x we get,
\[\frac{d y}{d x} = \frac{d}{dx}\left[ \frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}} \right]\]
\[ = \left[ \frac{\left( e^{2x} - e^{- 2x} \right)\frac{d}{dx}\left( e^{2x} + e^{- 2x} \right) - \left( e^{2x} + e^{- 2x} \right)\frac{d}{dx}\left( e^{2x} - e^{- 2x} \right)}{\left( e^{2x} - e^{- 2x} \right)^2} \right] \left[ \text{ Using quotient rule and chain rule } \right]\]
\[ = \frac{\left( e^{2x} - e^{- 2x} \right)\left[ e^{2x} \frac{d}{dx}\left( 2x \right) + e^{- 2x} \frac{d}{dx}\left( - 2x \right) \right] - \left( e^{2x} + e^{- 2x} \right)\left[ e^{2x} \frac{d}{dx}\left( 2x \right) - e^{- 2x} \frac{d}{dx}\left( - 2x \right) \right]}{\left( e^{2x} - e^{- 2x} \right)^2}\]
\[ = \frac{\left( e^{2x} - e^{- 2x} \right)\left( 2 e^{2x} - 2 e^{- 2x} \right) - \left( e^{2x} + e^{- 2x} \right)\left( 2 e^{2x} + 2 e^{- 2x} \right)}{\left( e^{2x} - e^{- 2x} \right)^2}\]
\[ = \frac{2 \left( e^{2x} - e^{- 2x} \right)^2 - 2 \left( e^{2x} + e^{- 2x} \right)^2}{\left( e^{2x} - e^{- 2x} \right)^2}\]
\[ = \frac{2\left[ e^{4x} + e^{- 4x} - 2 e^{2x} e^{- 2x} - e^{4x} - e^{- 4x} - 2 e^{2x} e^{- 2x} \right]}{\left( e^{2x} - e^{- 2x} \right)^2}\]
\[ = \frac{- 8}{\left( e^{2x} - e^{- 2x} \right)^2}\]
\[So, \frac{d}{dx}\left( \frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}} \right) = \frac{- 8}{\left( e^{2x} - e^{- 2x} \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate \[3^{x \log x}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
Differentiate (log x)x with respect to log x ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function x3 + tan x ?
Find the second order derivatives of the following function log (log x) ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =