Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
उत्तर
We have,
\[4x + 3y = \log\left( 4x - 3y \right)\]
Differentiating with respect to x, we get,
\[\frac{d}{dx}\left( 4x \right) + \frac{d}{dx}\left( 3y \right) = \frac{d}{dx}\left\{ \log\left( 4x - 3y \right) \right\}\]
\[ \Rightarrow 4 + 3\frac{d y}{d x} = \frac{1}{\left( 4x - 3y \right)}\frac{d}{dx}\left( 4x - 3y \right) \]
\[ \Rightarrow 4 + 3\frac{d y}{d x} = \frac{1}{\left( 4x - 3y \right)}\left( 4 - 3\frac{d y}{d x} \right)\]
\[ \Rightarrow 3\frac{d y}{d x} + \frac{3}{\left( 4x - 3y \right)}\frac{d y}{d x} = \frac{4}{\left( 4x - 3y \right)} - 4\]
\[ \Rightarrow 3\frac{d y}{d x}\left\{ 1 + \frac{1}{\left( 4x - 3y \right)} \right\} = 4\left\{ \frac{1}{\left( 4x - 3y \right)} - 1 \right\}\]
\[ \Rightarrow 3\frac{d y}{d x}\left\{ \frac{4x - 3y + 1}{\left( 4x - 3y \right)} \right\} = 4\left\{ \frac{1 - 4x + 3y}{\left( 4x - 3y \right)} \right\}\]
\[ \Rightarrow \frac{d y}{d x} = \frac{4}{3}\left\{ \frac{1 - 4x + 3y}{\left( 4x - 3y \right)} \right\}\left( \frac{4x - 3y}{4x - 3y + 1} \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{4}{3}\left( \frac{1 - 4x + 3y}{4x - 3y + 1} \right)\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to