Advertisements
Advertisements
प्रश्न
Differentiate the following functions from first principles sin−1 (2x + 3) ?
उत्तर
\[\text{Let} f\left( x \right) = \sin^{- 1} \left( 2x + 3 \right)\]
\[ \Rightarrow f\left( x + h \right) = \sin^{- 1} \left( 2\left( x + h \right) + 3 \right)\]
\[ \Rightarrow f\left( x + h \right) = \sin^{- 1} \left( 2x + 2h + 3 \right)\]
\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left( 2x + 2h + 3 \right) - \sin^{- 1} \left( 2x + 3 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left[ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right]}{h} \left[ \because \sin^{- 1} x - \sin^{- 1} y = \sin^{- 1} \left[ x\sqrt{1 - y^2} - y\sqrt{1 - x^2} \right] \right]\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} z}{z} \times \frac{z}{h}\]
\[\text{where, } z = \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \text{ and }\lim_{h \to 0} \frac{\sin^{- 1} h}{h} = 1\]
\[ = \lim_{h \to 0} \frac{z}{h}\]
\[ = \lim_{h \to 0} \frac{\left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} - \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( 2x + 2h + 3 \right)^2 \left\{ 1 - \left( 2x + 3 \right)^2 \right\} - \left( 2x + 3 \right)^2 \left\{ 1 - \left( 2x + 2h + 3 \right)^2 \right\}}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}} \] ...........[Rationalizing numerator]
\[ = \lim_{h \to 0} \frac{\left[ \left( 2x + 3 \right)^2 + 4 h^2 + 4h\left( 2x + 3 \right) \right]\left\{ 1 - \left( 2x + 3 \right)^2 \right\} - \left( 2x + 3 \right)^2 \left[ 1 - \left( 2x + 3 \right)^2 - 4 h^2 - 4h\left( 2x + 3 \right) \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \lim_{h \to 0} \frac{\left[ \left( 2x + 3 \right)^2 + 4 h^2 + 4h\left( 2x + 3 \right) - \left( 2x + 3 \right)^4 - 4 h^2 \left( 2x + 3 \right)^2 - 4h \left( 2x + 3 \right)^3 - \left( 2x + 3 \right)^2 + \left( 2x + 3 \right)^4 + 4 h^2 \left( 2x + 3 \right)^2 + 4h \left( 2x + 3 \right)^3 \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \lim_{h \to 0} \frac{4h\left[ h + \left( 2x + 3 \right) \right]}{h\left\{ \left( 2x + 2h + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 2h + 3 \right)^2} \right\}}\]
\[ = \frac{4\left( 2x + 3 \right)}{\left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2} + \left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ = \frac{4\left( 2x + 3 \right)}{2\left( 2x + 3 \right)\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ = \frac{2}{\sqrt{1 - \left( 2x + 3 \right)^2}}\]
\[ \therefore \frac{d}{dx}\left\{ \sin^{- 1} \left( 2x + 3 \right) \right\} = \frac{2}{\sqrt{1 - \left( 2x + 3 \right)^2}}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles x2ex ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]