Advertisements
Advertisements
प्रश्न
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
उत्तर
\[\text { We have,} \]
\[y = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} . . . (1)\]
\[\text { Differentiating y with respect to x, we get }\]
\[\frac{d y}{d x} =\text { an} \left\{ x + \sqrt{x^2 + 1} \right\}^{n - 1} \left( 1 + \frac{1}{2\sqrt{x^2 + 1}} \times 2x \right) - bn \left\{ x - \sqrt{x^2 + 1} \right\}^{- n - 1} \left( 1 - \frac{1}{2\sqrt{x^2 + 1}} \times 2x \right)\]
\[ = \text { an }\left\{ x + \sqrt{x^2 + 1} \right\}^{n - 1} \left( 1 + \frac{x}{\sqrt{x^2 + 1}} \right) - bn \left\{ x - \sqrt{x^2 + 1} \right\}^{- n - 1} \left( 1 - \frac{x}{\sqrt{x^2 + 1}} \right)\]
\[ = \text { an }\left\{ x + \sqrt{x^2 + 1} \right\}^{n - 1} \left( \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} \right) - bn \left\{ x - \sqrt{x^2 + 1} \right\}^{- n - 1} \left( \frac{\sqrt{x^2 + 1} - x}{\sqrt{x^2 + 1}} \right)\]
\[ = \text { an } \left\{ x + \sqrt{x^2 + 1} \right\}^{n - 1} \left( \frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \right) + bn \left\{ x - \sqrt{x^2 + 1} \right\}^{- n - 1} \left( \frac{x - \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \right)\]
\[ = \left\{ a \left\{ x + \sqrt{x^2 + 1} \right\}^n \left( \frac{n}{\sqrt{x^2 + 1}} \right) + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} \right\}\left( \frac{n}{\sqrt{x^2 + 1}} \right)\]
\[ = \left( \frac{n}{\sqrt{x^2 + 1}} \right)y \left[ \text { From }(1) \right]\]
\[ \Rightarrow \sqrt{x^2 + 1}\frac{d y}{d x} = ny\]
\[\text { Squaring both sides, we get }\]
\[\left( x^2 + 1 \right) \left( \frac{d y}{d x} \right)^2 = n^2 y^2 . . . (2)\]
\[\text{ Differentiating (2) with respect to x, we get }\]
\[\left( x^2 + 1 \right)2\frac{d y}{d x} \times \frac{d^2 y}{d x^2} + 2x \left( \frac{d y}{d x} \right)^2 = n^2 \left( 2y\frac{d y}{d x} \right)\]
\[ \Rightarrow \left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\left( \frac{d y}{d x} \right) = n^2 \left( y \right)\]
\[ \Rightarrow \left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\left( \frac{d y}{d x} \right) - n^2 y = 0\]
\[\text { Hence, }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 .\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles log cosec x ?
Differentiate tan 5x° ?
Differentiate \[3^{x^2 + 2x}\] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
Differentiate sin(log sin x) ?
f(x) = 3x2 + 6x + 8, x ∈ R