Advertisements
Advertisements
Question
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
Solution
\[\text { We have,} \]
\[y = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} . . . (1)\]
\[\text { Differentiating y with respect to x, we get }\]
\[\frac{d y}{d x} =\text { an} \left\{ x + \sqrt{x^2 + 1} \right\}^{n - 1} \left( 1 + \frac{1}{2\sqrt{x^2 + 1}} \times 2x \right) - bn \left\{ x - \sqrt{x^2 + 1} \right\}^{- n - 1} \left( 1 - \frac{1}{2\sqrt{x^2 + 1}} \times 2x \right)\]
\[ = \text { an }\left\{ x + \sqrt{x^2 + 1} \right\}^{n - 1} \left( 1 + \frac{x}{\sqrt{x^2 + 1}} \right) - bn \left\{ x - \sqrt{x^2 + 1} \right\}^{- n - 1} \left( 1 - \frac{x}{\sqrt{x^2 + 1}} \right)\]
\[ = \text { an }\left\{ x + \sqrt{x^2 + 1} \right\}^{n - 1} \left( \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} \right) - bn \left\{ x - \sqrt{x^2 + 1} \right\}^{- n - 1} \left( \frac{\sqrt{x^2 + 1} - x}{\sqrt{x^2 + 1}} \right)\]
\[ = \text { an } \left\{ x + \sqrt{x^2 + 1} \right\}^{n - 1} \left( \frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \right) + bn \left\{ x - \sqrt{x^2 + 1} \right\}^{- n - 1} \left( \frac{x - \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \right)\]
\[ = \left\{ a \left\{ x + \sqrt{x^2 + 1} \right\}^n \left( \frac{n}{\sqrt{x^2 + 1}} \right) + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} \right\}\left( \frac{n}{\sqrt{x^2 + 1}} \right)\]
\[ = \left( \frac{n}{\sqrt{x^2 + 1}} \right)y \left[ \text { From }(1) \right]\]
\[ \Rightarrow \sqrt{x^2 + 1}\frac{d y}{d x} = ny\]
\[\text { Squaring both sides, we get }\]
\[\left( x^2 + 1 \right) \left( \frac{d y}{d x} \right)^2 = n^2 y^2 . . . (2)\]
\[\text{ Differentiating (2) with respect to x, we get }\]
\[\left( x^2 + 1 \right)2\frac{d y}{d x} \times \frac{d^2 y}{d x^2} + 2x \left( \frac{d y}{d x} \right)^2 = n^2 \left( 2y\frac{d y}{d x} \right)\]
\[ \Rightarrow \left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\left( \frac{d y}{d x} \right) = n^2 \left( y \right)\]
\[ \Rightarrow \left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\left( \frac{d y}{d x} \right) - n^2 y = 0\]
\[\text { Hence, }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 .\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles ecos x.
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate sin (log x) ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
Find the second order derivatives of the following function x cos x ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If y = etan x, then (cos2 x)y2 =