Advertisements
Advertisements
Question
Differentiate the following functions from first principles ecos x.
Solution
\[\text{Let } f \left( x \right) = e^{\cos x} \]
\[ \Rightarrow f\left( x + h \right) = e^{\cos\left( x + h \right)} \]
\[\therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{e^{\cos\left( x + h \right)} - e^{\cos x}}{h}\]
\[ = \lim_{h \to 0} e^{\cos x }\left[ \frac{e^{\cos\left( x + h \right) - \cos x} - 1}{h} \right]\]
\[ = \lim_{h \to 0} e^{\cos x} \left[ \frac{e^{\cos\left( x + h \right) - \cos x} - 1}{\cos\left( x + h \right) \cos x} \right] \times \frac{\cos\left( x + h \right) - \ cosx}{h}\]
\[ = e^{\cos x} \lim_{h \to 0} \left( \frac{cos\left( x + h \right) - \cos x}{h} \right) \times \lim_{h \to 0} \left[ \frac{e^{\cos\left( x + h \right) - \ cos x} - 1}{\cos\left( x + h \right) - \cos x} \right]\]
\[ = e^{\cos x} \lim_{h \to 0} \left( \frac{\cos\left( x + h \right) - \cos x}{h} \right) \left[ \because \lim_{h \to 0} \frac{e^x - 1}{x} = 1 \right]\]
\[ = e^{\cos x} \lim_{h \to 0} \left\{ \frac{- 2\sin\left( \frac{x + h + x}{2} \right)\sin\left( \frac{x + h - x}{2} \right)}{h} \right\} \left[ \because \cos A - \cos B = - 2\sin \left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right) \right]\]
\[ = e^{\cos x} \lim_{h \to 0} \frac{- \sin\left( \frac{2x + h}{2} \right)}{1} \times \frac{\sin\left( \frac{h}{2} \right)}{\frac{h}{2}}\]
\[ = e^{\cos x} \lim_{h \to 0} \frac{- \sin\left( \frac{2x + h}{2} \right)}{1} \times \lim_{h \to 0} \frac{\sin\left( \frac{h}{2} \right)}{\frac{h}{2}}\]
\[ = e^{\cos x} \lim_{h \to 0} - \sin\left( \frac{2x + h}{2} \right) \left[ \because \frac{\sin x}{x} = 1 \right]\]
\[ = e^{\cos x} \left( - \sin x \right)\]
\[ = - \sin x e^{\cos x} \]
\[\text{ Hence }, \frac{d}{dx}\left( e^{\cos x} \right) = - \sin x e^{\cos x }\]
APPEARS IN
RELATED QUESTIONS
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles log cos x ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( \log x \right)^x\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
Differential coefficient of sec(tan−1 x) is ______.
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
Find the second order derivatives of the following function ex sin 5x ?
Find the second order derivatives of the following function x cos x ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?