Advertisements
Advertisements
प्रश्न
Differentiate the following functions from first principles ecos x.
उत्तर
\[\text{Let } f \left( x \right) = e^{\cos x} \]
\[ \Rightarrow f\left( x + h \right) = e^{\cos\left( x + h \right)} \]
\[\therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{e^{\cos\left( x + h \right)} - e^{\cos x}}{h}\]
\[ = \lim_{h \to 0} e^{\cos x }\left[ \frac{e^{\cos\left( x + h \right) - \cos x} - 1}{h} \right]\]
\[ = \lim_{h \to 0} e^{\cos x} \left[ \frac{e^{\cos\left( x + h \right) - \cos x} - 1}{\cos\left( x + h \right) \cos x} \right] \times \frac{\cos\left( x + h \right) - \ cosx}{h}\]
\[ = e^{\cos x} \lim_{h \to 0} \left( \frac{cos\left( x + h \right) - \cos x}{h} \right) \times \lim_{h \to 0} \left[ \frac{e^{\cos\left( x + h \right) - \ cos x} - 1}{\cos\left( x + h \right) - \cos x} \right]\]
\[ = e^{\cos x} \lim_{h \to 0} \left( \frac{\cos\left( x + h \right) - \cos x}{h} \right) \left[ \because \lim_{h \to 0} \frac{e^x - 1}{x} = 1 \right]\]
\[ = e^{\cos x} \lim_{h \to 0} \left\{ \frac{- 2\sin\left( \frac{x + h + x}{2} \right)\sin\left( \frac{x + h - x}{2} \right)}{h} \right\} \left[ \because \cos A - \cos B = - 2\sin \left( \frac{A + B}{2} \right)\sin\left( \frac{A - B}{2} \right) \right]\]
\[ = e^{\cos x} \lim_{h \to 0} \frac{- \sin\left( \frac{2x + h}{2} \right)}{1} \times \frac{\sin\left( \frac{h}{2} \right)}{\frac{h}{2}}\]
\[ = e^{\cos x} \lim_{h \to 0} \frac{- \sin\left( \frac{2x + h}{2} \right)}{1} \times \lim_{h \to 0} \frac{\sin\left( \frac{h}{2} \right)}{\frac{h}{2}}\]
\[ = e^{\cos x} \lim_{h \to 0} - \sin\left( \frac{2x + h}{2} \right) \left[ \because \frac{\sin x}{x} = 1 \right]\]
\[ = e^{\cos x} \left( - \sin x \right)\]
\[ = - \sin x e^{\cos x} \]
\[\text{ Hence }, \frac{d}{dx}\left( e^{\cos x} \right) = - \sin x e^{\cos x }\]
APPEARS IN
संबंधित प्रश्न
Differentiate \[e^{\sin^{- 1} 2x}\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function log (sin x) ?
Find the second order derivatives of the following function log (log x) ?
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .
Differentiate `log [x+2+sqrt(x^2+4x+1)]`