हिंदी

If Y = Log X 2 + X + 1 X 2 − X + 1 + 2 √ 3 Tan − 1 ( √ 3 X 1 − X 2 ) , Find D Y D X . ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?

उत्तर

\[\text{ We have, y } = \log\left( \frac{x^2 + x + 1}{x^2 - x + 1} \right) + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3x}}{1 - x^2} \right)\]
Differentiating with respect to x using chain rule,
\[\frac{dy}{dx} = \frac{d}{dx}\log\left( \frac{x^2 + x + 1}{x^2 - x + 1} \right) + \frac{2}{\sqrt{3}}\frac{d}{dx} \tan^{- 1} \left( \frac{\sqrt{3x}}{1 - x^2} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)}\frac{d}{dx}\left( \frac{x^2 + x + 1}{x^2 - x + 1} \right) + \frac{2}{\sqrt{3}}\left\{ \frac{1}{1 + \left( \frac{\sqrt{3x}}{1 - x^2} \right)^2} \right\}\frac{d}{dx}\left( \frac{\sqrt{3}x}{1 - x^2} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \left( \frac{x^2 - x + 1}{x^2 + x + 1} \right)\left( \frac{\left( x^2 - x + 1 \right)\frac{d}{dx}\left( x^2 + x + 1 \right) - \left( x^2 + x + 1 \right)\frac{d}{dx}\left( x^2 - x + 1 \right)}{\left( x^2 - x + 1 \right)^2} \right) + \frac{2}{\sqrt{3}}\left\{ \frac{\left( 1 - x^2 \right)^2}{1 + x^4 - 2 x^2 + 3 x^2} \right\} \left\{ \frac{\left( 1 - x^2 \right)\frac{d}{dx}\left( \sqrt{3}x \right) - \sqrt{3}x\frac{d}{dx}\left( 1 - x^2 \right)}{\left( 1 - x^2 \right)^2} \right\}\]
\[ \Rightarrow \frac{dy}{dx} = \left( \frac{1}{x^2 + x + 1} \right)\left\{ \frac{\left( x^2 - x + 1 \right)\left( 2x + 1 \right) - \left( x^2 + x + 1 \right)\left( 2x - 1 \right)}{\left( x^2 - x + 1 \right)} \right\} + \frac{2}{\sqrt{3}}\left\{ \frac{\left( 1 - x^2 \right)^2}{1 + x^2 + x^4} \right\}\left\{ \frac{\left( 1 - x^2 \right)\left( \sqrt{3} \right) - \sqrt{3}x\left( - 2x \right)}{\left( 1 - x^2 \right)^2} \right\}\]
\[ \Rightarrow \frac{dy}{dx} = \left( \frac{2 x^3 - 2 x^2 + 2x + x^2 - x + 1 - 2 x^3 - 2 x^2 - 2x + x^2 + x + 1}{x^4 + 2 x^2 + 1 - x^2} \right) + \frac{2}{\sqrt{3}}\left( \frac{\sqrt{3} - \sqrt{3} x^2 + 2\sqrt{3} x^2}{1 + x^2 + x^4} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \left( \frac{- 2 x^2 + 2}{x^4 + x^2 + 1} \right) + \frac{2\sqrt{3}\left( x^2 + 1 \right)}{\sqrt{3}\left( 1 + x^2 + x^4 \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2\left( 1 - x^2 \right)}{\left( x^4 + x^2 + 1 \right)} + \frac{2\left( x^2 + 1 \right)}{1 + x^2 + x^4}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2\left( 1 - x^2 + x^2 + 1 \right)}{1 + x^2 + x^4}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{4}{1 + x^2 + x^4}\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.05 [पृष्ठ ९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.05 | Q 52 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate sin (3x + 5) ?


Differentiate tan2 x ?


Differentiate sin2 (2x + 1) ?


Differentiate log7 (2x − 3) ?


Differentiate `2^(x^3)` ?


Differentiate (log sin x)?


Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?


Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?


Differentiate \[e^{ax} \sec x \tan 2x\] ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?


Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?


Differentiate \[x^{\sin^{- 1} x}\]  ?


Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?


If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?


If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If y = a + bx2, a, b arbitrary constants, then

 


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


f(x) = xx has a stationary point at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×