Advertisements
Advertisements
प्रश्न
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
उत्तर
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)}\frac{d}{dx}\left( \frac{x^2 + x + 1}{x^2 - x + 1} \right) + \frac{2}{\sqrt{3}}\left\{ \frac{1}{1 + \left( \frac{\sqrt{3x}}{1 - x^2} \right)^2} \right\}\frac{d}{dx}\left( \frac{\sqrt{3}x}{1 - x^2} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \left( \frac{x^2 - x + 1}{x^2 + x + 1} \right)\left( \frac{\left( x^2 - x + 1 \right)\frac{d}{dx}\left( x^2 + x + 1 \right) - \left( x^2 + x + 1 \right)\frac{d}{dx}\left( x^2 - x + 1 \right)}{\left( x^2 - x + 1 \right)^2} \right) + \frac{2}{\sqrt{3}}\left\{ \frac{\left( 1 - x^2 \right)^2}{1 + x^4 - 2 x^2 + 3 x^2} \right\} \left\{ \frac{\left( 1 - x^2 \right)\frac{d}{dx}\left( \sqrt{3}x \right) - \sqrt{3}x\frac{d}{dx}\left( 1 - x^2 \right)}{\left( 1 - x^2 \right)^2} \right\}\]
\[ \Rightarrow \frac{dy}{dx} = \left( \frac{1}{x^2 + x + 1} \right)\left\{ \frac{\left( x^2 - x + 1 \right)\left( 2x + 1 \right) - \left( x^2 + x + 1 \right)\left( 2x - 1 \right)}{\left( x^2 - x + 1 \right)} \right\} + \frac{2}{\sqrt{3}}\left\{ \frac{\left( 1 - x^2 \right)^2}{1 + x^2 + x^4} \right\}\left\{ \frac{\left( 1 - x^2 \right)\left( \sqrt{3} \right) - \sqrt{3}x\left( - 2x \right)}{\left( 1 - x^2 \right)^2} \right\}\]
\[ \Rightarrow \frac{dy}{dx} = \left( \frac{2 x^3 - 2 x^2 + 2x + x^2 - x + 1 - 2 x^3 - 2 x^2 - 2x + x^2 + x + 1}{x^4 + 2 x^2 + 1 - x^2} \right) + \frac{2}{\sqrt{3}}\left( \frac{\sqrt{3} - \sqrt{3} x^2 + 2\sqrt{3} x^2}{1 + x^2 + x^4} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \left( \frac{- 2 x^2 + 2}{x^4 + x^2 + 1} \right) + \frac{2\sqrt{3}\left( x^2 + 1 \right)}{\sqrt{3}\left( 1 + x^2 + x^4 \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2\left( 1 - x^2 \right)}{\left( x^4 + x^2 + 1 \right)} + \frac{2\left( x^2 + 1 \right)}{1 + x^2 + x^4}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2\left( 1 - x^2 + x^2 + 1 \right)}{1 + x^2 + x^4}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{4}{1 + x^2 + x^4}\]
APPEARS IN
संबंधित प्रश्न
Differentiate sin (3x + 5) ?
Differentiate tan2 x ?
Differentiate sin2 (2x + 1) ?
Differentiate log7 (2x − 3) ?
Differentiate `2^(x^3)` ?
Differentiate (log sin x)2 ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If y = a + bx2, a, b arbitrary constants, then
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.
f(x) = xx has a stationary point at ______.