हिंदी

If Y = X Sin − 1 X √ 1 − X 2 , Prove that ( 1 − X 2 ) D Y D X = X + Y X ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?

उत्तर

\[\text{We have, y } = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\]  Differentiating with respect to x,

\[\frac{d y}{d x} = \frac{d}{dx}\left( \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} \right)\]

\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{\sqrt{1 - x^2}\frac{d}{dx}\left( x \sin^{- 1} x \right) - \left( x \sin^{- 1} x \right)\frac{d}{dx}\left( \sqrt{1 - x^2} \right)}{\left( \sqrt{1 - x^2} \right)^2} \right] \]

\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{\sqrt{1 - x^2}\left\{ x\frac{d}{dx}\left( \sin^{- 1} x \right) + \sin^{- 1} x\frac{d}{dx}\left( x \right) \right\} - \left( x \sin^{- 1} x \right)\frac{1}{2\sqrt{1 - x^2}}\frac{d}{dx}\left( 1 - x^2 \right)}{\left( 1 - x^2 \right)} \right] \]

\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{\sqrt{1 - x^2}\left\{ \frac{x}{\sqrt{1 - x^2}} + \sin^{- 1} x \right\} - \frac{x \sin^{- 1} x\left( - 2x \right)}{2\sqrt{1 - x^2}}}{\left( 1 - x^2 \right)} \right]\]

\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{x + \sqrt{1 - x^2} \sin^{- 1} x + \frac{x^2 \sin^{- 1} x}{\sqrt{1 - x^2}}}{\left( 1 - x^2 \right)} \right]\]

\[ \Rightarrow \left( 1 - x^2 \right)\frac{d y}{d x} = x + \frac{\sqrt{1 - x^2} \sin^{- 1} x}{1} + \frac{x^2 \sin^{- 1} x}{\sqrt{1 - x^2}}\]

\[ \Rightarrow \left( 1 - x^2 \right)\frac{d y}{d x} = x + \left( \frac{\left( 1 - x^2 \right) \sin^{- 1} x + x^2 \sin^{- 1} x}{\sqrt{1 - x^2}} \right)\]

\[ \Rightarrow \left( 1 - x^2 \right)\frac{d y}{d x} = x + \left( \frac{\sin^{- 1} x - x^2 \sin^{- 1} x + x^2 \sin^{- 1} x}{\sqrt{1 - x^2}} \right)\]

\[ \Rightarrow \left( 1 - x^2 \right)\frac{d y}{d x} = x + \left( \frac{\sin^{- 1} x}{\sqrt{1 - x^2}} \right)\]

\[ \Rightarrow \left( 1 - x^2 \right)\frac{d y}{d x} = x + \frac{y}{x} \left[ \because y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.02 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.02 | Q 64 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate the following functions from first principles e3x.


Differentiate the following functions from first principles  \[e^\sqrt{2x}\].


Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


Find \[\frac{dy}{dx}\]  \[y = x^x + \left( \sin x \right)^x\] ?


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 


If \[x = \cos t \text{ and y }  = \sin t,\] prove that  \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?

 


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\]  ?

 


Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?


\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ? 


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If x = 2aty = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If y = etan x, then (cos2 x)y2 =


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .


If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .


Differentiate sin(log sin x) ?


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×