हिंदी

If Y = X + Tan X, Show that Cos 2 X D 2 Y D X 2 − 2 Y + 2 X = 0 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?

उत्तर

Here,

\[y = x + \tan x\]
\[\text { Differentiating w . r . t . x, we get }\]
\[\frac{d y}{d x} = 1 + \sec^2 x\]
\[\text { Differentiating again w . r . t . x, we get }\]
\[\frac{d^2 y}{d x^2} = 2 \sec^2 x\tan x\]
\[\text { Dividing both sides by }\sec^2 x, \text { we get }\]
\[ \cos^2 x \frac{d^2 y}{d x^2} = 2\tan x\]
\[ \Rightarrow \cos^2 x \frac{d^2 y}{d x^2} = 2(y - x) \left[ \because y = x + \tan x \Rightarrow \tan x = y - x \right]\]
\[ \Rightarrow \cos^2 x \frac{d^2 y}{d x^2} - 2y + 2x = 0\]

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Higher Order Derivatives - Exercise 12.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 12 Higher Order Derivatives
Exercise 12.1 | Q 3 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate the following functions from first principles ecos x.


Differentiate \[3^{e^x}\] ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?


If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


Differentiate \[e^{x \log x}\] ?


Differentiate \[{10}^{ \log \sin x }\] ?


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


If \[xy \log \left( x + y \right) = 1\] , prove that  \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .


If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function ex sin 5x  ?


If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]

\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


f(x) = 3x2 + 6x + 8, x ∈ R


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×