हिंदी

If Sin Y = X Sin ( a + Y ) , Then D Y D X is (A) Sin a Sin a Sin 2 ( a + Y ) - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .

विकल्प

  • \[\frac{\sin a}{\sin a \sin^2 \left( a + y \right)}\]

  • \[\frac{\sin^2 \left( a + y \right)}{\sin a}\]

  • \[\sin a \sin^2 \left( a + y \right)\]

  • \[\frac{\sin^2 \left( a - y \right)}{\sin a}\]

MCQ

उत्तर

\[\frac{\sin^2 \left( a + y \right)}{\sin a}\]

 

\[\text { We have,} \sin y = x \sin\left( a + y \right)\]

\[\Rightarrow \frac{d}{dx}\left( \sin y \right) = \frac{d}{dx}\left[ x \sin\left( a + y \right) \right]\]
\[ \Rightarrow \cos y\frac{dy}{dx} = \sin\left( a + y \right)\frac{d}{dx}\left( x \right) + x\frac{d}{dx}\left\{ \sin\left( a + y \right) \right\}\]
\[ \Rightarrow \cos y\frac{dy}{dx} = \sin\left( a + y \right) \times 1 + x \cos\left( a + y \right)\frac{dy}{dx}\]
\[ \Rightarrow \cos y\frac{dy}{dx} = \sin\left( a + y \right) + x \cos\left( a + y \right)\frac{dy}{dx}\]
\[ \Rightarrow \cos y\frac{dy}{dx} - x \cos\left( a + y \right)\frac{dy}{dx} = \sin\left( a + y \right)\]
\[ \Rightarrow \left\{ \cos y - x \cos \left( a + y \right) \right\}\frac{dy}{dx} = \sin\left( a + y \right)\]
\[ \Rightarrow \left\{ \cos y - \frac{\sin y}{\sin\left( a + y \right)} \times \cos\left( a + y \right) \right\}\frac{dy}{dx} = \sin\left( a + y \right) .............\binom{\because \sin y = 2 \sin x \cos x}{ \therefore x = \frac{\sin y}{\sin\left( a + y \right)}}\]
\[ \Rightarrow \left\{ \frac{\sin\left( a + y \right) \cos y - \sin y \cos\left( a + y \right)}{\sin\left( a + y \right)} \right\}\frac{dy}{dx} = \sin\left( a + y \right)\]
\[ \Rightarrow \frac{\sin\left( a + y - y \right)}{\sin\left( a + y \right)} \times \frac{dy}{dx} = \sin\left( a + y \right) \]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.10 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.10 | Q 19 | पृष्ठ १२०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles  \[e^\sqrt{2x}\].


Differentiate \[3^{x \log x}\] ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Differentiate \[{10}^{ \log \sin x }\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


Find \[\frac{dy}{dx}\]

\[y = x^x + x^{1/x}\] ?


If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?


If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?


If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?

 


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


Find \[\frac{dy}{dx}\] , when \[x = b   \sin^2   \theta  \text{ and }  y = a   \cos^2   \theta\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2 \sqrt{2}}, \frac{1}{\sqrt{2 \sqrt{2}}} \right)\] ?

Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


Differential coefficient of sec(tan−1 x) is ______.


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.


\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×