हिंदी

If x=sin(12logy) show that (1 − x2)y2 − xy1 − a2y = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.

योग

उत्तर

Given,

x = sin`(1/a log y)`

`(logy) = asin^-1 x`

y = `e^(asin^-1 x)`       ...(i)

To prove: `(1 - x^2)y_2 - xy_1 - a^2 = 0`

First, determine the second-order derivative, as we have noticed one in the expression that needs to be demonstrated.

Lets find `(d^2y)/(dx^2)`

As, `(d^2y)/(dx^2) = d/dx ((dy)/(dx))`

So, lets first find dy/dx

∵ `y = e^(asin^-1 x)`

Let t = `asin^-1 x => (dt)/(dx) = a/(sqrt((1 - x^2)))[d/dx sin^-1 x = 1/(sqrt((1 - x^2)))]`

And y = et

`(dy)/(dx) = e^t a/(sqrt((1 - x^2))) = (ae^(asin^-1 x))/sqrt((1 - x^2))`    ...(ii)

Again, differentiating with respect to x applying product rule:

`(d^2y)/(dx^2) = ae^(a sin^-1 x) d/dx (1/sqrt((1 - x^2))) + a/(sqrt((1 - x^2))) d/dx e^(asin^-1 x)`

Using chain rule and equation 2:

`(d^2y)/(dx^2) = -(ae^(asin-1 x))/(2(1 - x^2)sqrt((1 - x^2)))(-2x) + (a^2e^(asin^-1 x))/((1 - x^2)) ["Using" d/dx (x^n) = nx^(n-1) d/dx sin^-1 x = 1/(sqrt((1 - x^2)))]`

`(d^2y)/(dx^2) = (Xae^(asin^-1 x))/((1 - x^2)sqrt(1 -x^2)) + (a^2e^(asin^-1 x))/((1 - x^2))`

`(1 - x^2) (d^2y)/(dx^2) = a^2e^(asin^-1 x) + (Xae^(asin^-1 x))/(sqrt(1 - x^2))`

Using eq (i) and (ii):

`(1 - x^2) (d^2y)/(dx^2) - a^2y + x dy/dx`

∴ (1 − x2)y2 − xy1 − a2y = 0    ...proved

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Higher Order Derivatives - Exercise 12.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 12 Higher Order Derivatives
Exercise 12.1 | Q 24 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate sin (log x) ?


Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


Differentiate \[x^{\sin x}\]  ?


Differentiate \[\left( \log x \right)^{ \log x }\] ?


find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:

If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


If  \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?

 


Differentiate x2 with respect to x3


Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


If y = (sin−1 x)2, prove that (1 − x2)

\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


Differentiate the following with respect to x

\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


f(x) = xx has a stationary point at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×