Advertisements
Advertisements
प्रश्न
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
उत्तर
Given,
x = sin`(1/a log y)`
`(logy) = asin^-1 x`
y = `e^(asin^-1 x)` ...(i)
To prove: `(1 - x^2)y_2 - xy_1 - a^2 = 0`
First, determine the second-order derivative, as we have noticed one in the expression that needs to be demonstrated.
Lets find `(d^2y)/(dx^2)`
As, `(d^2y)/(dx^2) = d/dx ((dy)/(dx))`
So, lets first find dy/dx
∵ `y = e^(asin^-1 x)`
Let t = `asin^-1 x => (dt)/(dx) = a/(sqrt((1 - x^2)))[d/dx sin^-1 x = 1/(sqrt((1 - x^2)))]`
And y = et
`(dy)/(dx) = e^t a/(sqrt((1 - x^2))) = (ae^(asin^-1 x))/sqrt((1 - x^2))` ...(ii)
Again, differentiating with respect to x applying product rule:
`(d^2y)/(dx^2) = ae^(a sin^-1 x) d/dx (1/sqrt((1 - x^2))) + a/(sqrt((1 - x^2))) d/dx e^(asin^-1 x)`
Using chain rule and equation 2:
`(d^2y)/(dx^2) = -(ae^(asin-1 x))/(2(1 - x^2)sqrt((1 - x^2)))(-2x) + (a^2e^(asin^-1 x))/((1 - x^2)) ["Using" d/dx (x^n) = nx^(n-1) d/dx sin^-1 x = 1/(sqrt((1 - x^2)))]`
`(d^2y)/(dx^2) = (Xae^(asin^-1 x))/((1 - x^2)sqrt(1 -x^2)) + (a^2e^(asin^-1 x))/((1 - x^2))`
`(1 - x^2) (d^2y)/(dx^2) = a^2e^(asin^-1 x) + (Xae^(asin^-1 x))/(sqrt(1 - x^2))`
Using eq (i) and (ii):
`(1 - x^2) (d^2y)/(dx^2) - a^2y + x dy/dx`
∴ (1 − x2)y2 − xy1 − a2y = 0 ...proved
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate sin (log x) ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
Differentiate x2 with respect to x3
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .
Differentiate `log [x+2+sqrt(x^2+4x+1)]`
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.
f(x) = xx has a stationary point at ______.