Advertisements
Advertisements
प्रश्न
Differentiate x2 with respect to x3
उत्तर
\[\text{ Let u }= x^2 \text{ and }v = x^3 \]
\[ \Rightarrow \frac{du}{dx} = 2x \text { and } \frac{dv}{dx} = 3 x^2 \]
\[ \therefore \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2x}{3 x^2} = \frac{2}{3x}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles log cosec x ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[\left( \sin^{- 1} x \right)^x\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
Find the second order derivatives of the following function ex sin 5x ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
Find the minimum value of (ax + by), where xy = c2.
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?