Advertisements
Advertisements
प्रश्न
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
उत्तर
\[\text{ Let, y } = \tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}\]
\[\text{ Put x }= a \sin\theta\]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{a \sin\theta}{a + \sqrt{a^2 - a^2 \sin^2 \theta}} \right\}\]
\[ \Rightarrow y = \tan^{- 1} \left( \frac{a \sin\theta}{a + \sqrt{a^2 \left( 1 - \sin^2 \theta \right)}} \right) \]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{a \sin\theta}{a + a \cos\theta} \right\}\]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{a \sin\theta}{a\left( 1 + \cos\theta \right)} \right\} \]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{\sin\theta}{1 + \cos\theta} \right\}\]
\[ \Rightarrow y = \tan^{- 1} \left\{ \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}} \right\}\]
\[ \Rightarrow y = \tan^{- 1} \left( \tan \frac{\theta}{2} \right) . . . \left( i \right) \]
\[\text{Here }, - a < x < a\]
\[ \Rightarrow - 1 < \frac{x}{a} < 1\]
\[ \Rightarrow - 1 < \sin\theta < 1\]
\[ \Rightarrow - \frac{\pi}{2} < \theta < \frac{\pi}{2}\]
\[ \Rightarrow - \frac{\pi}{4} < \frac{\theta}{2} < \frac{\pi}{4}\]
\[\text{ So, from equation } \left( i \right), \]
\[ y = \frac{\theta}{2} .......\left[ \text{ Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ \Rightarrow y = \frac{1}{2} \sin^{- 1} \left( \frac{x}{a} \right) ..........\left[ \text{ Since }, x = a \sin\theta \right]\]
\[\text{ Differentiating it with respect to x }, \]
\[ \frac{d y}{d x} = \frac{1}{2} \times \frac{1}{\sqrt{1 - \left( \frac{x}{a} \right)^2}}\frac{d}{dx}\left( \frac{x}{a} \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{a}{2\sqrt{a^2 - x^2}} \times \left( \frac{1}{a} \right)\]
\[ \therefore \frac{d y}{d x} = \frac{1}{2\sqrt{a^2 - x^2}}\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate sin (log x) ?
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate x2 with respect to x3
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If y = etan x, then (cos2 x)y2 =
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?