हिंदी

If Y = Sin − 1 ( 2 X 1 + X 2 ) + Sec − 1 ( 1 + X 2 1 − X 2 ) , 0 < X < 1 , Prove that D Y D X = 4 1 + X 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 

योग

उत्तर

\[\text{ Let, y } = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + se c^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right)\]

\[ \Rightarrow y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right)\]

\[\text{ Put, x } = \tan\theta\]

\[ \therefore y = \sin^{- 1} \left( \frac{2 \tan\theta}{1 + \tan^2 \theta} \right) + \cos^{- 1} \left( \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right) \]

\[ \Rightarrow y = \sin^{- 1} \left( \sin 2\theta \right) + \cos^{- 1} \left( \cos 2\theta \right) . . . \left( i \right)\]

\[\text{ Here}, 0 < x < 1\]

\[ \Rightarrow 0 < \tan\theta < 1\]

\[ \Rightarrow 0 < \theta < \frac{\pi}{4}\]

\[ \Rightarrow 0 < 2\theta < \frac{\pi}{2}\]

\[\text{ So, from equation} \left( i \right), \]

\[ y = 2\theta + 2\theta ........[\text{ Since}, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right],  \cos^{- 1} \left( \cos\theta \right) = \theta, \text{ if }\theta \in \left[ 0, \pi \right]\]

\[ \Rightarrow y = 4\theta\]

\[ \Rightarrow y = 4 \tan^{- 1} x ...........\left[ \text{ Since}, x = \tan\theta \right]\]

Differentiate it with respect to x,

\[\therefore \frac{d y}{d x} = \frac{4}{1 + x^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.03 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.03 | Q 35 | पृष्ठ ६४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that `y=(4sintheta)/(2+costheta)-theta `


​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate the following functions from first principles x2ex ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[x^{\tan^{- 1} x }\]  ?


Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


If `y=(sinx)^x + sin^-1 sqrtx  "then find"  dy/dx` 


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?


If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \]  to ∞, then find the value of  \[\frac{dy}{dx}\] ?


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to  \[\cos^{- 1} x\]  is ___________ .


Find the second order derivatives of the following function x3 log ?


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


f(x) = 3x2 + 6x + 8, x ∈ R


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×