हिंदी

Differentiate the Following Function from First Principles E √ Cot X - Mathematics

Advertisements
Advertisements

प्रश्न

​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .

योग

उत्तर

\[\text{Let} f\left( x \right) = e^\sqrt{\cot x} \]

\[ \Rightarrow f\left( x + h \right) = e^\sqrt{\cot\left( x + h \right)} \]

\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]

\[ = \lim_{h \to 0} \frac{e^\sqrt{\cot\left( x + h \right)} - e^\sqrt{\cot x}}{h}\]

\[ = \lim_{h \to 0} \frac{e^\sqrt{\cot x} \left( e^{\sqrt{\cot\left( x + h \right)} - \sqrt{\cot x}} - 1 \right)}{h}\]

\[ = e^\sqrt{\cot x} \lim_{h \to 0} \left(\frac{e^{\sqrt{\cot\left( x + h \right)} - \sqrt{\cot x}} - 1}{\sqrt{\cot\left( x + h \right)} - \sqrt{\cot x}} \right) \times \left( \frac{\sqrt{\cot\left( x + h \right)} - \sqrt{\cot x}}{h} \right)\]
\[ = e^\sqrt{\cot x} \lim_{h \to 0} \frac{\left( \sqrt{\cot\left( x + h \right)} - \sqrt{\cot x} \right)}{h} \times \frac{\sqrt{\cot\left( x + h \right)} + \sqrt{\cot x}}{\sqrt{\cot\left( x + h \right)} + \sqrt{\cot x}} \left[ \because \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \text{ and rationalizing the numerator } \right]\]
\[ = e^\sqrt{\cot x} \lim_{h \to 0} \frac{\cot\left( x + h \right) - \cot x}{h\left( \sqrt{\cot\left( x + h \right)} + \sqrt{\cot x} \right)}\]
\[ = e^\sqrt{\cot x} \lim_{h \to 0} \frac{\frac{\cot\left( x + h \right)\cot x + 1}{\cot\left( x - x - h \right)}}{h\left( \sqrt{\cot\left( x + h \right)} + \sqrt{\cot x} \right)} \left[ \because \cot\left( A - B \right) = \frac{\cot A\cot B + 1}{\cot B - \cot A} \right]\]
\[ = e^\sqrt{\cot x} \lim_{h \to 0} \frac{\cot\left( x + h \right)\cot x + 1}{\cot\left( - h \right) \times h\left( \sqrt{\cot\left( x + h \right)} + \sqrt{\cot x} \right)}\]
\[ = - e^\sqrt{\cot x} \lim_{h \to 0} \frac{\cot\left( x + h \right)\cot x + 1}{\left( \frac{h}{\tanh} \right)\left( \sqrt{\cot\left( x + h \right)} + \sqrt{\cot x} \right)}\]
\[ = \frac{e^\sqrt{\cot x} \times \left( \cot^2 x + 1 \right)}{2\sqrt{\cot x}} \left[ \because \lim_{x \to 0} \frac{\tan x}{x} = 1 \right]\]
\[ = - \frac{e^\sqrt{\cot x} \times {cosec}^2 x}{2\sqrt{\cot x}} \left[ \because \left( 1 + \cot^2 x \right) = {cosec}^2 x \right]\]
\[ \therefore \frac{d}{dx}\left( e^\sqrt{cot x} \right) = - \frac{e^\sqrt{\cot x} \times {cosec}^2 x}{2\sqrt{\cot x}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.01 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.01 | Q 7 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles e−x.


Differentiate the following functions from first principles x2ex ?


Differentiate (log sin x)?


Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


Differentiate \[\left( \tan x \right)^{1/x}\] ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?

\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

If  \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\]  ?

 


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?


If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?


\[\frac{d}{dx} \left[ \log \left\{ e^x \left( \frac{x - 2}{x + 2} \right)^{3/4} \right\} \right]\] equals ___________ .

If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?


If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 = 

 


Find the minimum value of (ax + by), where xy = c2.


If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×