हिंदी

If √ Y + X + √ Y − X = C , Show that D Y D X = Y X − √ Y 2 X 2 − 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?

उत्तर

\[\text{ Here,} \] \[ \sqrt{y + x} + \sqrt{y - x} = c\]

Differentiating with respect to x,

\[\Rightarrow \frac{d}{dx}\left( \sqrt{y + x} \right) + \frac{d}{dx}\sqrt{y - x} = \frac{d}{dx}\left( c \right)\]

\[ \Rightarrow \frac{1}{2\sqrt{y + x}}\frac{d}{dx}\left( y + x \right) + \frac{1}{2\sqrt{y - x}}\frac{d}{dx}\left( y - x \right) = 0 \]

\[ \Rightarrow \frac{1}{2\sqrt{y + x}}\left( \frac{dy}{dx} + 1 \right) + \frac{1}{2\sqrt{y - x}}\left( \frac{dy}{dx} - 1 \right) = 0\]

\[ \Rightarrow \frac{dy}{dx}\left( \frac{1}{2\sqrt{y + x}} \right) + \frac{dy}{dx}\left( \frac{1}{2\sqrt{y - x}} \right) = \frac{1}{2\sqrt{y - x}} - \frac{1}{2\sqrt{y + x}}\]

\[ \Rightarrow \frac{dy}{dx} \times \frac{1}{2}\left[ \frac{1}{\sqrt{y + x}} + \frac{1}{\sqrt{y - x}} \right] = \frac{1}{2}\left[ \frac{\sqrt{y + x} - \sqrt{y - x}}{\sqrt{y - x}\sqrt{y + x}} \right]\]

\[ \Rightarrow \frac{dy}{dx}\left[ \frac{\sqrt{y - x} + \sqrt{y + x}}{\sqrt{y + x}\sqrt{y - x}} \right] = \left[ \frac{\sqrt{y + x} - \sqrt{y - x}}{\sqrt{y - x}\sqrt{y + x}} \right]\]

\[ \Rightarrow \frac{dy}{dx} = \frac{\sqrt{y + x} - \sqrt{y - x}}{\sqrt{y + x} + \sqrt{y - x}} \times \frac{\sqrt{y + x} - \sqrt{y - x}}{\sqrt{y + x} - \sqrt{y - x}} \left[ \text{ rationalizing the denominator } \right]\]

\[ \Rightarrow \frac{dy}{dx} = \frac{\left( y + x \right) + \left( y - x \right) - 2\sqrt{y + x}\sqrt{y - x}}{y + x - y + x}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2y - 2\sqrt{y^2 - x^2}}{2x}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2y}{2x} - \frac{2\sqrt{y^2 - x^2}}{2x}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2 - x^2}{x^2}}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.04 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.04 | Q 31 | पृष्ठ ७५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?


Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?


Differentiate \[\left( \log x \right)^{\cos x}\] ?


Differentiate  \[\sin \left( x^x \right)\] ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


If  \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?

 


\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?

Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?


Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


Differentiate (log x)x with respect to log x ?


Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?


If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?


If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×