Advertisements
Advertisements
प्रश्न
Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
उत्तर
\[\text{ Let, y } = \cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\]
\[\text{ Put x } = \text{ a cot}\theta\]
\[ \Rightarrow y = \cos^{- 1} \left\{ \frac{a cot\theta}{\sqrt{a^2 co t^2 \theta + a^2}} \right\}\]
\[ \Rightarrow y = \cos^{- 1} \left\{ \frac{a cot\theta}{\sqrt{a^2 \left( co t^2 \theta + 1 \right)}} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left( \frac{a cot\theta}{\text {a cosec }\theta} \right)\]
\[ \Rightarrow y = \cos^{- 1} \left( \frac{\frac{\cos\theta}{\sin\theta}}{\frac{1}{\sin\theta}} \right)\]
\[ \Rightarrow y = \cos^{- 1} \left( \cos\theta \right) \]
\[ \Rightarrow y = \theta\]
\[ \Rightarrow y = co t^{- 1} \left( \frac{x}{a} \right) \left[ \text{since, x = a cot}\theta \right] \]
\[\text{ Differentiating it with respect to x using chain rule }, \]
\[\frac{d y}{d x} = \frac{- 1}{1 + \left( \frac{x}{a} \right)^2}\frac{d}{dx}\left( \frac{x}{a} \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{- a^2}{a^2 + x^2} \times \left( \frac{1}{a} \right)\]
\[ \therefore \frac{d y}{d x} = \frac{- a}{a^2 + x^2}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles log cosec x ?
Differentiate tan (x° + 45°) ?
Differentiate `2^(x^3)` ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
Find the second order derivatives of the following function ex sin 5x ?
Find the second order derivatives of the following function x3 log x ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If y = a + bx2, a, b arbitrary constants, then
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]