Advertisements
Advertisements
प्रश्न
विकल्प
\[\frac{x^2 - 1}{x^2 - 4}\]
1
\[\frac{x^2 + 1}{x^2 - 4}\]
\[e^x \frac{x^2 - 1}{x^2 - 4}\]
उत्तर
\[\frac{x^2 - 1}{x^2 - 4}\]
\[\text { Let y } = \frac{d}{dx}\left[ \log\left\{ e^x \left( \frac{x - 2}{x + 2} \right)^\frac{3}{4} \right\} \right]\]
\[ \Rightarrow y = \frac{d}{dx}\left[ x\log e + \frac{3}{4}\log\left( \frac{x - 2}{x + 2} \right) \right]\]
\[ \Rightarrow y = \frac{d}{dx}\left[ x + \frac{3}{4}\log\left( \frac{x - 2}{x + 2} \right) \right]\]
\[ \Rightarrow \frac{dy}{dx} = 1 + \frac{3}{4\left( \frac{x - 2}{x + 2} \right)} \times \frac{\left( x + 2 \right) \times 1 - \left( x - 2 \right) \times 1}{\left( x + 2 \right)^2}\]
\[ \Rightarrow \frac{dy}{dx} = 1 + \frac{3\left( x + 2 \right)}{4\left( x - 2 \right)} \times \frac{x + 2 - x + 2}{\left( x + 2 \right)^2}\]
\[ \Rightarrow \frac{dy}{dx} = 1 + \frac{3\left( x + 2 \right)}{4\left( x - 2 \right)} \times \frac{4}{\left( x + 2 \right)}\]
\[ \Rightarrow \frac{dy}{dx} = 1 + \frac{3}{\left( x^2 - 4 \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 - 4 + 3}{x^2 - 4}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 - 1}{x^2 - 4}\]
APPEARS IN
संबंधित प्रश्न
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
Find the second order derivatives of the following function x3 + tan x ?
Find the second order derivatives of the following function tan−1 x ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`